Loading…
Optimization and characterization of a 1.5 kV, 100 sp rise time, all-solid-state pulse generator
A state-of-the-art, all-solid-state sub-nanosecond pulse generator is presented. The generator is characterized by three compression stages. The first stage uses a power MOSFET that initially provides current increase in the storage inductor and then breaks the current. The second stage uses a 3 kV...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A state-of-the-art, all-solid-state sub-nanosecond pulse generator is presented. The generator is characterized by three compression stages. The first stage uses a power MOSFET that initially provides current increase in the storage inductor and then breaks the current. The second stage uses a 3 kV drift step recovery diode that cuts the reverse current rapidly to create a less than 1 nanosecond rise time pulse to charge a peaking capacitor. In the last stage, a silicon-avalanche shaper is used as a fast closing switch to discharge the capacitor. A 100 ps rise time, 1.5 kV output with 250 ps FWHM to a 50 Ohm load was achieved at a high pulse repetition frequency of up to 60 kHz with low < 30 ps jitter. The optimization and characterization of this generator will be presented. |
---|---|
ISSN: | 0730-9244 2576-7208 |
DOI: | 10.1109/PLASMA.2008.4591190 |