Loading…

Message-passing decoding of lattices using Gaussian mixtures

A belief-propagation decoder for low-density lattice codes, which represents messages explicitly as a mixture of Gaussians functions, is given. In order to prevent the number of functions from growing as the decoder iterations progress, a method for reducing the number of Gaussians at each step is g...

Full description

Saved in:
Bibliographic Details
Main Authors: Kurkoski, B., Dauwels, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2493
container_issue
container_start_page 2489
container_title
container_volume
creator Kurkoski, B.
Dauwels, J.
description A belief-propagation decoder for low-density lattice codes, which represents messages explicitly as a mixture of Gaussians functions, is given. In order to prevent the number of functions from growing as the decoder iterations progress, a method for reducing the number of Gaussians at each step is given. A squared distance metric is used, which is shown to be a lower bound on the divergence. For an unconstrained power system, comparisons are made with a quantized implementation. For a dimension 100 lattice, a loss of about 0.2 dB was found; for dimension 1000 and 10000 lattices, the difference in error rate was indistinguishable. The memory required to store the messages is substantially superior to the quantized implementation.
doi_str_mv 10.1109/ISIT.2008.4595439
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4595439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4595439</ieee_id><sourcerecordid>4595439</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4b19d23a47a981a9874c05347d7579edb570eace8fc26bfd74b1eebba52e9f13</originalsourceid><addsrcrecordid>eNpVkNtKw0AQhtdDwVDzAOJNXmDjHmY7u-CNFK2Bihfmvmyyk7LSE9kU9O2NWi8c-JkfvpmB-Rm7kaKUUri76q2qSyWELcE4A9qdsdyhlaAAlDLozlmmpEFupcSLf2ymLv-YcGbCMlRcogONVyxP6V2MBUYrsBm7f6GU_Jr4wacUd-siULsP32bfFRs_DLGlVBx_0MIfxxm_K7bxYzj2lK7ZpPObRPmpT1n99FjPn_nydVHNH5Y8SjQDh0a6oLQH9M7KUQitMBow4PgHhcagIN-S7Vo1a7qA4wJR03ijyHVST9nt79lIRKtDH7e-_1ydYtFfrMNQAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Message-passing decoding of lattices using Gaussian mixtures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kurkoski, B. ; Dauwels, J.</creator><creatorcontrib>Kurkoski, B. ; Dauwels, J.</creatorcontrib><description>A belief-propagation decoder for low-density lattice codes, which represents messages explicitly as a mixture of Gaussians functions, is given. In order to prevent the number of functions from growing as the decoder iterations progress, a method for reducing the number of Gaussians at each step is given. A squared distance metric is used, which is shown to be a lower bound on the divergence. For an unconstrained power system, comparisons are made with a quantized implementation. For a dimension 100 lattice, a loss of about 0.2 dB was found; for dimension 1000 and 10000 lattices, the difference in error rate was indistinguishable. The memory required to store the messages is substantially superior to the quantized implementation.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424422562</identifier><identifier>ISBN: 1424422566</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424422579</identifier><identifier>EISBN: 1424422574</identifier><identifier>DOI: 10.1109/ISIT.2008.4595439</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Complexity theory ; Decoding ; Distance measurement ; Inference algorithms ; Lattices</subject><ispartof>2008 IEEE International Symposium on Information Theory, 2008, p.2489-2493</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4595439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4595439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurkoski, B.</creatorcontrib><creatorcontrib>Dauwels, J.</creatorcontrib><title>Message-passing decoding of lattices using Gaussian mixtures</title><title>2008 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>A belief-propagation decoder for low-density lattice codes, which represents messages explicitly as a mixture of Gaussians functions, is given. In order to prevent the number of functions from growing as the decoder iterations progress, a method for reducing the number of Gaussians at each step is given. A squared distance metric is used, which is shown to be a lower bound on the divergence. For an unconstrained power system, comparisons are made with a quantized implementation. For a dimension 100 lattice, a loss of about 0.2 dB was found; for dimension 1000 and 10000 lattices, the difference in error rate was indistinguishable. The memory required to store the messages is substantially superior to the quantized implementation.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Complexity theory</subject><subject>Decoding</subject><subject>Distance measurement</subject><subject>Inference algorithms</subject><subject>Lattices</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424422562</isbn><isbn>1424422566</isbn><isbn>9781424422579</isbn><isbn>1424422574</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkNtKw0AQhtdDwVDzAOJNXmDjHmY7u-CNFK2Bihfmvmyyk7LSE9kU9O2NWi8c-JkfvpmB-Rm7kaKUUri76q2qSyWELcE4A9qdsdyhlaAAlDLozlmmpEFupcSLf2ymLv-YcGbCMlRcogONVyxP6V2MBUYrsBm7f6GU_Jr4wacUd-siULsP32bfFRs_DLGlVBx_0MIfxxm_K7bxYzj2lK7ZpPObRPmpT1n99FjPn_nydVHNH5Y8SjQDh0a6oLQH9M7KUQitMBow4PgHhcagIN-S7Vo1a7qA4wJR03ijyHVST9nt79lIRKtDH7e-_1ydYtFfrMNQAQ</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Kurkoski, B.</creator><creator>Dauwels, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>Message-passing decoding of lattices using Gaussian mixtures</title><author>Kurkoski, B. ; Dauwels, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4b19d23a47a981a9874c05347d7579edb570eace8fc26bfd74b1eebba52e9f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Complexity theory</topic><topic>Decoding</topic><topic>Distance measurement</topic><topic>Inference algorithms</topic><topic>Lattices</topic><toplevel>online_resources</toplevel><creatorcontrib>Kurkoski, B.</creatorcontrib><creatorcontrib>Dauwels, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurkoski, B.</au><au>Dauwels, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Message-passing decoding of lattices using Gaussian mixtures</atitle><btitle>2008 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2008-07</date><risdate>2008</risdate><spage>2489</spage><epage>2493</epage><pages>2489-2493</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424422562</isbn><isbn>1424422566</isbn><eisbn>9781424422579</eisbn><eisbn>1424422574</eisbn><abstract>A belief-propagation decoder for low-density lattice codes, which represents messages explicitly as a mixture of Gaussians functions, is given. In order to prevent the number of functions from growing as the decoder iterations progress, a method for reducing the number of Gaussians at each step is given. A squared distance metric is used, which is shown to be a lower bound on the divergence. For an unconstrained power system, comparisons are made with a quantized implementation. For a dimension 100 lattice, a loss of about 0.2 dB was found; for dimension 1000 and 10000 lattices, the difference in error rate was indistinguishable. The memory required to store the messages is substantially superior to the quantized implementation.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2008.4595439</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2008 IEEE International Symposium on Information Theory, 2008, p.2489-2493
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_4595439
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Approximation methods
Complexity theory
Decoding
Distance measurement
Inference algorithms
Lattices
title Message-passing decoding of lattices using Gaussian mixtures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Message-passing%20decoding%20of%20lattices%20using%20Gaussian%20mixtures&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Kurkoski,%20B.&rft.date=2008-07&rft.spage=2489&rft.epage=2493&rft.pages=2489-2493&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424422562&rft.isbn_list=1424422566&rft_id=info:doi/10.1109/ISIT.2008.4595439&rft.eisbn=9781424422579&rft.eisbn_list=1424422574&rft_dat=%3Cieee_6IE%3E4595439%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4b19d23a47a981a9874c05347d7579edb570eace8fc26bfd74b1eebba52e9f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4595439&rfr_iscdi=true