Loading…
Research on transform of outliers based on density
This paper proposed a data transform method based on error-adjusted density of micro-datasets, so as to distinguish the characteristics of outliers efficiently and improve the accuracy of prediction models. It divided the large multi-dimensional data sets into many grid cells, and in each cell assig...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 793 |
container_issue | |
container_start_page | 790 |
container_title | |
container_volume | |
creator | Ge Xin Ding Enjie |
description | This paper proposed a data transform method based on error-adjusted density of micro-datasets, so as to distinguish the characteristics of outliers efficiently and improve the accuracy of prediction models. It divided the large multi-dimensional data sets into many grid cells, and in each cell assigned each data point to its closest micro-dataset using a nearest neighbor algorithm, data points were represented by calculating the error-adjusted density estimation in each micro-dataset. Thereby, the processed data could embody the information of the area which they belonged to and show the data variation characteristics rightly. |
doi_str_mv | 10.1109/CCDC.2008.4597421 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4597421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4597421</ieee_id><sourcerecordid>4597421</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cffec417b601f8eb4cfc0d5323dc4f52e41768e440b0913a2d8b6e963acaea653</originalsourceid><addsrcrecordid>eNpVkMlKxEAURcuhwbbNB4ib_EBiDa-Gt5Q4QoMgum4qlVcY6U6kKi76743YCN7NXRw4XC5jl4LXQnC8bprbppacuxo0WpDiiBVonQAJIKwCc8yWAsFVCGBP_jGFp39M4YKdzxqL3KDAM1bk_MHngFbG8iWTL5TJp_BejkM5JT_kOKZdOcZy_Jq2PaVctj5T94M7GnI_7S_YIvptpuLQK_Z2f_faPFbr54en5mZd9cLqqQoxUpj3tIaL6KiFEAPvtJKqCxC1pJkZRwC85SiUl51rDaFRPnjyRqsVu_r19kS0-Uz9zqf95nCH-gZ-10xT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on transform of outliers based on density</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ge Xin ; Ding Enjie</creator><creatorcontrib>Ge Xin ; Ding Enjie</creatorcontrib><description>This paper proposed a data transform method based on error-adjusted density of micro-datasets, so as to distinguish the characteristics of outliers efficiently and improve the accuracy of prediction models. It divided the large multi-dimensional data sets into many grid cells, and in each cell assigned each data point to its closest micro-dataset using a nearest neighbor algorithm, data points were represented by calculating the error-adjusted density estimation in each micro-dataset. Thereby, the processed data could embody the information of the area which they belonged to and show the data variation characteristics rightly.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424417339</identifier><identifier>ISBN: 1424417333</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424417346</identifier><identifier>EISBN: 1424417341</identifier><identifier>DOI: 10.1109/CCDC.2008.4597421</identifier><identifier>LCCN: 2007906919</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data Transform ; Density Estimation ; Micro-Dataset ; Outlier</subject><ispartof>2008 Chinese Control and Decision Conference, 2008, p.790-793</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4597421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4597421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ge Xin</creatorcontrib><creatorcontrib>Ding Enjie</creatorcontrib><title>Research on transform of outliers based on density</title><title>2008 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>This paper proposed a data transform method based on error-adjusted density of micro-datasets, so as to distinguish the characteristics of outliers efficiently and improve the accuracy of prediction models. It divided the large multi-dimensional data sets into many grid cells, and in each cell assigned each data point to its closest micro-dataset using a nearest neighbor algorithm, data points were represented by calculating the error-adjusted density estimation in each micro-dataset. Thereby, the processed data could embody the information of the area which they belonged to and show the data variation characteristics rightly.</description><subject>Data Transform</subject><subject>Density Estimation</subject><subject>Micro-Dataset</subject><subject>Outlier</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424417339</isbn><isbn>1424417333</isbn><isbn>9781424417346</isbn><isbn>1424417341</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMlKxEAURcuhwbbNB4ib_EBiDa-Gt5Q4QoMgum4qlVcY6U6kKi76743YCN7NXRw4XC5jl4LXQnC8bprbppacuxo0WpDiiBVonQAJIKwCc8yWAsFVCGBP_jGFp39M4YKdzxqL3KDAM1bk_MHngFbG8iWTL5TJp_BejkM5JT_kOKZdOcZy_Jq2PaVctj5T94M7GnI_7S_YIvptpuLQK_Z2f_faPFbr54en5mZd9cLqqQoxUpj3tIaL6KiFEAPvtJKqCxC1pJkZRwC85SiUl51rDaFRPnjyRqsVu_r19kS0-Uz9zqf95nCH-gZ-10xT</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Ge Xin</creator><creator>Ding Enjie</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>Research on transform of outliers based on density</title><author>Ge Xin ; Ding Enjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cffec417b601f8eb4cfc0d5323dc4f52e41768e440b0913a2d8b6e963acaea653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Data Transform</topic><topic>Density Estimation</topic><topic>Micro-Dataset</topic><topic>Outlier</topic><toplevel>online_resources</toplevel><creatorcontrib>Ge Xin</creatorcontrib><creatorcontrib>Ding Enjie</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge Xin</au><au>Ding Enjie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on transform of outliers based on density</atitle><btitle>2008 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2008-07</date><risdate>2008</risdate><spage>790</spage><epage>793</epage><pages>790-793</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424417339</isbn><isbn>1424417333</isbn><eisbn>9781424417346</eisbn><eisbn>1424417341</eisbn><abstract>This paper proposed a data transform method based on error-adjusted density of micro-datasets, so as to distinguish the characteristics of outliers efficiently and improve the accuracy of prediction models. It divided the large multi-dimensional data sets into many grid cells, and in each cell assigned each data point to its closest micro-dataset using a nearest neighbor algorithm, data points were represented by calculating the error-adjusted density estimation in each micro-dataset. Thereby, the processed data could embody the information of the area which they belonged to and show the data variation characteristics rightly.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2008.4597421</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2008 Chinese Control and Decision Conference, 2008, p.790-793 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_4597421 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data Transform Density Estimation Micro-Dataset Outlier |
title | Research on transform of outliers based on density |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20transform%20of%20outliers%20based%20on%20density&rft.btitle=2008%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Ge%20Xin&rft.date=2008-07&rft.spage=790&rft.epage=793&rft.pages=790-793&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424417339&rft.isbn_list=1424417333&rft_id=info:doi/10.1109/CCDC.2008.4597421&rft.eisbn=9781424417346&rft.eisbn_list=1424417341&rft_dat=%3Cieee_6IE%3E4597421%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-cffec417b601f8eb4cfc0d5323dc4f52e41768e440b0913a2d8b6e963acaea653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4597421&rfr_iscdi=true |