Loading…

Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting

GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the pre...

Full description

Saved in:
Bibliographic Details
Main Authors: Niu Dongxiao, Li Yanchang, Li Wei
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 443
container_issue
container_start_page 438
container_title
container_volume 1
creator Niu Dongxiao
Li Yanchang
Li Wei
description GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k > n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.
doi_str_mv 10.1109/CCCM.2008.179
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4609548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4609548</ieee_id><sourcerecordid>4609548</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-29d8e6c48d4829d155c4b1a057acf55403afb50425d997c31062475db7632dff3</originalsourceid><addsrcrecordid>eNotjE1Lw0AYhBe0YFt79ORl_0Difm_2WENbhYSCKHgrb7IbXU2zZROF-OtN0ZnDPAzDIHRDSUopMXd5npcpIyRLqTYXaEG0MpIzQ14v0ZxRKRKjKJ-hxXljmNLUXKFV33-QSdycPUfw5HoHsX7HocETe_sFLd7EGGKy7gachzZ0I96fBn_0PzD40OFdhBGXwboW30PvLJ66EuJn-Ma-w0UAi7chuhr6wXdv12jWQNu71X8u0ct285w_JMV-95ivi8RTLYeEGZs5VYvMimxiKmUtKgpEaqgbKQXh0FSSCCatMbrmlCgmtLSVVpzZpuFLdPv3651zh1P0R4jjQShipMj4L7JWVZc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Niu Dongxiao ; Li Yanchang ; Li Wei</creator><creatorcontrib>Niu Dongxiao ; Li Yanchang ; Li Wei</creatorcontrib><description>GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k &gt; n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.</description><identifier>ISSN: 2154-9613</identifier><identifier>ISBN: 076953290X</identifier><identifier>ISBN: 9780769532905</identifier><identifier>DOI: 10.1109/CCCM.2008.179</identifier><identifier>LCCN: 2008926719</identifier><language>eng</language><publisher>IEEE</publisher><subject>ACO ; Analytical models ; Biological system modeling ; Cities and towns ; Equal dimension new information ; Forecasting ; Markov chain ; Mathematical model ; Power systems ; Predictive models</subject><ispartof>2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, Vol.1, p.438-443</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4609548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4609548$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu Dongxiao</creatorcontrib><creatorcontrib>Li Yanchang</creatorcontrib><creatorcontrib>Li Wei</creatorcontrib><title>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</title><title>2008 ISECS International Colloquium on Computing, Communication, Control, and Management</title><addtitle>CCCM</addtitle><description>GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k &gt; n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.</description><subject>ACO</subject><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Cities and towns</subject><subject>Equal dimension new information</subject><subject>Forecasting</subject><subject>Markov chain</subject><subject>Mathematical model</subject><subject>Power systems</subject><subject>Predictive models</subject><issn>2154-9613</issn><isbn>076953290X</isbn><isbn>9780769532905</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AYhBe0YFt79ORl_0Difm_2WENbhYSCKHgrb7IbXU2zZROF-OtN0ZnDPAzDIHRDSUopMXd5npcpIyRLqTYXaEG0MpIzQ14v0ZxRKRKjKJ-hxXljmNLUXKFV33-QSdycPUfw5HoHsX7HocETe_sFLd7EGGKy7gachzZ0I96fBn_0PzD40OFdhBGXwboW30PvLJ66EuJn-Ma-w0UAi7chuhr6wXdv12jWQNu71X8u0ct285w_JMV-95ivi8RTLYeEGZs5VYvMimxiKmUtKgpEaqgbKQXh0FSSCCatMbrmlCgmtLSVVpzZpuFLdPv3651zh1P0R4jjQShipMj4L7JWVZc</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Niu Dongxiao</creator><creator>Li Yanchang</creator><creator>Li Wei</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</title><author>Niu Dongxiao ; Li Yanchang ; Li Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-29d8e6c48d4829d155c4b1a057acf55403afb50425d997c31062475db7632dff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ACO</topic><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Cities and towns</topic><topic>Equal dimension new information</topic><topic>Forecasting</topic><topic>Markov chain</topic><topic>Mathematical model</topic><topic>Power systems</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu Dongxiao</creatorcontrib><creatorcontrib>Li Yanchang</creatorcontrib><creatorcontrib>Li Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu Dongxiao</au><au>Li Yanchang</au><au>Li Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</atitle><btitle>2008 ISECS International Colloquium on Computing, Communication, Control, and Management</btitle><stitle>CCCM</stitle><date>2008-08</date><risdate>2008</risdate><volume>1</volume><spage>438</spage><epage>443</epage><pages>438-443</pages><issn>2154-9613</issn><isbn>076953290X</isbn><isbn>9780769532905</isbn><abstract>GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k &gt; n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.</abstract><pub>IEEE</pub><doi>10.1109/CCCM.2008.179</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2154-9613
ispartof 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, Vol.1, p.438-443
issn 2154-9613
language eng
recordid cdi_ieee_primary_4609548
source IEEE Electronic Library (IEL) Conference Proceedings
subjects ACO
Analytical models
Biological system modeling
Cities and towns
Equal dimension new information
Forecasting
Markov chain
Mathematical model
Power systems
Predictive models
title Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20of%20Residual%20Error-Ant%20Colony%20Optimization%20Gray%20Model%20Based%20on%20Markov%20in%20Load%20Forecasting&rft.btitle=2008%20ISECS%20International%20Colloquium%20on%20Computing,%20Communication,%20Control,%20and%20Management&rft.au=Niu%20Dongxiao&rft.date=2008-08&rft.volume=1&rft.spage=438&rft.epage=443&rft.pages=438-443&rft.issn=2154-9613&rft.isbn=076953290X&rft.isbn_list=9780769532905&rft_id=info:doi/10.1109/CCCM.2008.179&rft_dat=%3Cieee_6IE%3E4609548%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-29d8e6c48d4829d155c4b1a057acf55403afb50425d997c31062475db7632dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4609548&rfr_iscdi=true