Loading…
Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting
GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the pre...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 443 |
container_issue | |
container_start_page | 438 |
container_title | |
container_volume | 1 |
creator | Niu Dongxiao Li Yanchang Li Wei |
description | GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k > n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value. |
doi_str_mv | 10.1109/CCCM.2008.179 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4609548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4609548</ieee_id><sourcerecordid>4609548</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-29d8e6c48d4829d155c4b1a057acf55403afb50425d997c31062475db7632dff3</originalsourceid><addsrcrecordid>eNotjE1Lw0AYhBe0YFt79ORl_0Difm_2WENbhYSCKHgrb7IbXU2zZROF-OtN0ZnDPAzDIHRDSUopMXd5npcpIyRLqTYXaEG0MpIzQ14v0ZxRKRKjKJ-hxXljmNLUXKFV33-QSdycPUfw5HoHsX7HocETe_sFLd7EGGKy7gachzZ0I96fBn_0PzD40OFdhBGXwboW30PvLJ66EuJn-Ma-w0UAi7chuhr6wXdv12jWQNu71X8u0ct285w_JMV-95ivi8RTLYeEGZs5VYvMimxiKmUtKgpEaqgbKQXh0FSSCCatMbrmlCgmtLSVVpzZpuFLdPv3651zh1P0R4jjQShipMj4L7JWVZc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Niu Dongxiao ; Li Yanchang ; Li Wei</creator><creatorcontrib>Niu Dongxiao ; Li Yanchang ; Li Wei</creatorcontrib><description>GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k > n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.</description><identifier>ISSN: 2154-9613</identifier><identifier>ISBN: 076953290X</identifier><identifier>ISBN: 9780769532905</identifier><identifier>DOI: 10.1109/CCCM.2008.179</identifier><identifier>LCCN: 2008926719</identifier><language>eng</language><publisher>IEEE</publisher><subject>ACO ; Analytical models ; Biological system modeling ; Cities and towns ; Equal dimension new information ; Forecasting ; Markov chain ; Mathematical model ; Power systems ; Predictive models</subject><ispartof>2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, Vol.1, p.438-443</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4609548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4609548$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu Dongxiao</creatorcontrib><creatorcontrib>Li Yanchang</creatorcontrib><creatorcontrib>Li Wei</creatorcontrib><title>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</title><title>2008 ISECS International Colloquium on Computing, Communication, Control, and Management</title><addtitle>CCCM</addtitle><description>GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k > n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.</description><subject>ACO</subject><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Cities and towns</subject><subject>Equal dimension new information</subject><subject>Forecasting</subject><subject>Markov chain</subject><subject>Mathematical model</subject><subject>Power systems</subject><subject>Predictive models</subject><issn>2154-9613</issn><isbn>076953290X</isbn><isbn>9780769532905</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AYhBe0YFt79ORl_0Difm_2WENbhYSCKHgrb7IbXU2zZROF-OtN0ZnDPAzDIHRDSUopMXd5npcpIyRLqTYXaEG0MpIzQ14v0ZxRKRKjKJ-hxXljmNLUXKFV33-QSdycPUfw5HoHsX7HocETe_sFLd7EGGKy7gachzZ0I96fBn_0PzD40OFdhBGXwboW30PvLJ66EuJn-Ma-w0UAi7chuhr6wXdv12jWQNu71X8u0ct285w_JMV-95ivi8RTLYeEGZs5VYvMimxiKmUtKgpEaqgbKQXh0FSSCCatMbrmlCgmtLSVVpzZpuFLdPv3651zh1P0R4jjQShipMj4L7JWVZc</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Niu Dongxiao</creator><creator>Li Yanchang</creator><creator>Li Wei</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</title><author>Niu Dongxiao ; Li Yanchang ; Li Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-29d8e6c48d4829d155c4b1a057acf55403afb50425d997c31062475db7632dff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ACO</topic><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Cities and towns</topic><topic>Equal dimension new information</topic><topic>Forecasting</topic><topic>Markov chain</topic><topic>Mathematical model</topic><topic>Power systems</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu Dongxiao</creatorcontrib><creatorcontrib>Li Yanchang</creatorcontrib><creatorcontrib>Li Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu Dongxiao</au><au>Li Yanchang</au><au>Li Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting</atitle><btitle>2008 ISECS International Colloquium on Computing, Communication, Control, and Management</btitle><stitle>CCCM</stitle><date>2008-08</date><risdate>2008</risdate><volume>1</volume><spage>438</spage><epage>443</epage><pages>438-443</pages><issn>2154-9613</issn><isbn>076953290X</isbn><isbn>9780769532905</isbn><abstract>GM(1,1) forecasting model has the advantages of few sample data required, easy calculation, high prediction accuracy in short terms, examination, etc. it is extensively applied in the load forecasting. However, it has its localization. The greater the gray level of data is greater, the lower the prediction precision is. Besides, it is not suitable for long term forecasting of economy to step backwards for years, which, to a certain extent, is caused by parameter a in the model. To solve the problem, vector thetas was introduced to set up residual error GM(1,1, thetas) model, which is solved by ant colony optimization (ACO). Meanwhile equal dimension new information and Markov matrix are applied to estimate symbol of residual error forecast value when k > n. Case analysis shows that it effectively improves prediction precision in comparison with traditional forecasting methods. Application shows that the method has definite utility value.</abstract><pub>IEEE</pub><doi>10.1109/CCCM.2008.179</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2154-9613 |
ispartof | 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, Vol.1, p.438-443 |
issn | 2154-9613 |
language | eng |
recordid | cdi_ieee_primary_4609548 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | ACO Analytical models Biological system modeling Cities and towns Equal dimension new information Forecasting Markov chain Mathematical model Power systems Predictive models |
title | Research of Residual Error-Ant Colony Optimization Gray Model Based on Markov in Load Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20of%20Residual%20Error-Ant%20Colony%20Optimization%20Gray%20Model%20Based%20on%20Markov%20in%20Load%20Forecasting&rft.btitle=2008%20ISECS%20International%20Colloquium%20on%20Computing,%20Communication,%20Control,%20and%20Management&rft.au=Niu%20Dongxiao&rft.date=2008-08&rft.volume=1&rft.spage=438&rft.epage=443&rft.pages=438-443&rft.issn=2154-9613&rft.isbn=076953290X&rft.isbn_list=9780769532905&rft_id=info:doi/10.1109/CCCM.2008.179&rft_dat=%3Cieee_6IE%3E4609548%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-29d8e6c48d4829d155c4b1a057acf55403afb50425d997c31062475db7632dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4609548&rfr_iscdi=true |