Loading…

Privacy Preserving of Associative Classification and Heuristic Approach

In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data q...

Full description

Saved in:
Bibliographic Details
Main Authors: Harnsamut, N., Natwichai, J., Seisungsittisunti, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 439
container_issue
container_start_page 434
container_title
container_volume
creator Harnsamut, N.
Natwichai, J.
Seisungsittisunti, B.
description In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.
doi_str_mv 10.1109/SNPD.2008.155
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4617410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4617410</ieee_id><sourcerecordid>4617410</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d86bfa4a1c1918ad5a2452d1e5a9591c084f61cb4e89fc09c087d2422815d8bd3</originalsourceid><addsrcrecordid>eNotjE1LxDAURQMyoI5dunKTP9CalyZtshyqzgiDFtT18JoPjYxtSWph_r0VvZvLPQcuIdfACgCmb1-e2ruCM6YKkPKMZLpWrK60LHlV6hW5_FWaVwzkOclS-mRLSr04dUG2bQwzmhNto0suzqF_p4Onm5QGE3AKs6PNEVMKPphlDj3F3tKd-44hTcHQzTjGAc3HFVl5PCaX_feavD3cvza7fP-8fWw2-zxALafcqqrzKBAMaFBoJXIhuQUnUUsNhinhKzCdcEp7w_QCassF5wqkVZ0t1-Tm7zc45w5jDF8YTwdRQS2AlT-mUEyB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Privacy Preserving of Associative Classification and Heuristic Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harnsamut, N. ; Natwichai, J. ; Seisungsittisunti, B.</creator><creatorcontrib>Harnsamut, N. ; Natwichai, J. ; Seisungsittisunti, B.</creatorcontrib><description>In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.</description><identifier>ISBN: 9780769532639</identifier><identifier>ISBN: 0769532632</identifier><identifier>DOI: 10.1109/SNPD.2008.155</identifier><identifier>LCCN: 2008926015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Data mining ; Data privacy ; Diseases ; Heuristic algorithms ; Optimized production technology ; Transforms</subject><ispartof>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008, p.434-439</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4617410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4617410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harnsamut, N.</creatorcontrib><creatorcontrib>Natwichai, J.</creatorcontrib><creatorcontrib>Seisungsittisunti, B.</creatorcontrib><title>Privacy Preserving of Associative Classification and Heuristic Approach</title><title>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing</title><addtitle>SNPD</addtitle><description>In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.</description><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Data privacy</subject><subject>Diseases</subject><subject>Heuristic algorithms</subject><subject>Optimized production technology</subject><subject>Transforms</subject><isbn>9780769532639</isbn><isbn>0769532632</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LxDAURQMyoI5dunKTP9CalyZtshyqzgiDFtT18JoPjYxtSWph_r0VvZvLPQcuIdfACgCmb1-e2ruCM6YKkPKMZLpWrK60LHlV6hW5_FWaVwzkOclS-mRLSr04dUG2bQwzmhNto0suzqF_p4Onm5QGE3AKs6PNEVMKPphlDj3F3tKd-44hTcHQzTjGAc3HFVl5PCaX_feavD3cvza7fP-8fWw2-zxALafcqqrzKBAMaFBoJXIhuQUnUUsNhinhKzCdcEp7w_QCassF5wqkVZ0t1-Tm7zc45w5jDF8YTwdRQS2AlT-mUEyB</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Harnsamut, N.</creator><creator>Natwichai, J.</creator><creator>Seisungsittisunti, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Privacy Preserving of Associative Classification and Heuristic Approach</title><author>Harnsamut, N. ; Natwichai, J. ; Seisungsittisunti, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d86bfa4a1c1918ad5a2452d1e5a9591c084f61cb4e89fc09c087d2422815d8bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Data privacy</topic><topic>Diseases</topic><topic>Heuristic algorithms</topic><topic>Optimized production technology</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Harnsamut, N.</creatorcontrib><creatorcontrib>Natwichai, J.</creatorcontrib><creatorcontrib>Seisungsittisunti, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harnsamut, N.</au><au>Natwichai, J.</au><au>Seisungsittisunti, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Privacy Preserving of Associative Classification and Heuristic Approach</atitle><btitle>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing</btitle><stitle>SNPD</stitle><date>2008-08</date><risdate>2008</risdate><spage>434</spage><epage>439</epage><pages>434-439</pages><isbn>9780769532639</isbn><isbn>0769532632</isbn><abstract>In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.</abstract><pub>IEEE</pub><doi>10.1109/SNPD.2008.155</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769532639
ispartof 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008, p.434-439
issn
language eng
recordid cdi_ieee_primary_4617410
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Data mining
Data privacy
Diseases
Heuristic algorithms
Optimized production technology
Transforms
title Privacy Preserving of Associative Classification and Heuristic Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Privacy%20Preserving%20of%20Associative%20Classification%20and%20Heuristic%20Approach&rft.btitle=2008%20Ninth%20ACIS%20International%20Conference%20on%20Software%20Engineering,%20Artificial%20Intelligence,%20Networking,%20and%20Parallel/Distributed%20Computing&rft.au=Harnsamut,%20N.&rft.date=2008-08&rft.spage=434&rft.epage=439&rft.pages=434-439&rft.isbn=9780769532639&rft.isbn_list=0769532632&rft_id=info:doi/10.1109/SNPD.2008.155&rft_dat=%3Cieee_6IE%3E4617410%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d86bfa4a1c1918ad5a2452d1e5a9591c084f61cb4e89fc09c087d2422815d8bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4617410&rfr_iscdi=true