Loading…
Privacy Preserving of Associative Classification and Heuristic Approach
In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data q...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 439 |
container_issue | |
container_start_page | 434 |
container_title | |
container_volume | |
creator | Harnsamut, N. Natwichai, J. Seisungsittisunti, B. |
description | In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments. |
doi_str_mv | 10.1109/SNPD.2008.155 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4617410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4617410</ieee_id><sourcerecordid>4617410</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d86bfa4a1c1918ad5a2452d1e5a9591c084f61cb4e89fc09c087d2422815d8bd3</originalsourceid><addsrcrecordid>eNotjE1LxDAURQMyoI5dunKTP9CalyZtshyqzgiDFtT18JoPjYxtSWph_r0VvZvLPQcuIdfACgCmb1-e2ruCM6YKkPKMZLpWrK60LHlV6hW5_FWaVwzkOclS-mRLSr04dUG2bQwzmhNto0suzqF_p4Onm5QGE3AKs6PNEVMKPphlDj3F3tKd-44hTcHQzTjGAc3HFVl5PCaX_feavD3cvza7fP-8fWw2-zxALafcqqrzKBAMaFBoJXIhuQUnUUsNhinhKzCdcEp7w_QCassF5wqkVZ0t1-Tm7zc45w5jDF8YTwdRQS2AlT-mUEyB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Privacy Preserving of Associative Classification and Heuristic Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harnsamut, N. ; Natwichai, J. ; Seisungsittisunti, B.</creator><creatorcontrib>Harnsamut, N. ; Natwichai, J. ; Seisungsittisunti, B.</creatorcontrib><description>In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.</description><identifier>ISBN: 9780769532639</identifier><identifier>ISBN: 0769532632</identifier><identifier>DOI: 10.1109/SNPD.2008.155</identifier><identifier>LCCN: 2008926015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Data mining ; Data privacy ; Diseases ; Heuristic algorithms ; Optimized production technology ; Transforms</subject><ispartof>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008, p.434-439</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4617410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4617410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harnsamut, N.</creatorcontrib><creatorcontrib>Natwichai, J.</creatorcontrib><creatorcontrib>Seisungsittisunti, B.</creatorcontrib><title>Privacy Preserving of Associative Classification and Heuristic Approach</title><title>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing</title><addtitle>SNPD</addtitle><description>In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.</description><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Data privacy</subject><subject>Diseases</subject><subject>Heuristic algorithms</subject><subject>Optimized production technology</subject><subject>Transforms</subject><isbn>9780769532639</isbn><isbn>0769532632</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LxDAURQMyoI5dunKTP9CalyZtshyqzgiDFtT18JoPjYxtSWph_r0VvZvLPQcuIdfACgCmb1-e2ruCM6YKkPKMZLpWrK60LHlV6hW5_FWaVwzkOclS-mRLSr04dUG2bQwzmhNto0suzqF_p4Onm5QGE3AKs6PNEVMKPphlDj3F3tKd-44hTcHQzTjGAc3HFVl5PCaX_feavD3cvza7fP-8fWw2-zxALafcqqrzKBAMaFBoJXIhuQUnUUsNhinhKzCdcEp7w_QCassF5wqkVZ0t1-Tm7zc45w5jDF8YTwdRQS2AlT-mUEyB</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Harnsamut, N.</creator><creator>Natwichai, J.</creator><creator>Seisungsittisunti, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Privacy Preserving of Associative Classification and Heuristic Approach</title><author>Harnsamut, N. ; Natwichai, J. ; Seisungsittisunti, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d86bfa4a1c1918ad5a2452d1e5a9591c084f61cb4e89fc09c087d2422815d8bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Data privacy</topic><topic>Diseases</topic><topic>Heuristic algorithms</topic><topic>Optimized production technology</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Harnsamut, N.</creatorcontrib><creatorcontrib>Natwichai, J.</creatorcontrib><creatorcontrib>Seisungsittisunti, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harnsamut, N.</au><au>Natwichai, J.</au><au>Seisungsittisunti, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Privacy Preserving of Associative Classification and Heuristic Approach</atitle><btitle>2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing</btitle><stitle>SNPD</stitle><date>2008-08</date><risdate>2008</risdate><spage>434</spage><epage>439</epage><pages>434-439</pages><isbn>9780769532639</isbn><isbn>0769532632</isbn><abstract>In the era of data explosion, privacy preserving has become a necessary task for any data mining task. Therefore, data transformation to ensure privacy preservation is needed. Meanwhile, the transformed data must have quality to be used in the intended data mining task, i.e. the impact on the data quality with regard to the data mining task must be minimized. However, the data transformation problem to preserve the data privacy while minimizing the impact has been proven as an NP-hard. Also, for classification mining, each classification approach may use different approach to deliver knowledge. Therefore, data quality metric for the classification task should be tailored to a specific type of classification. In this paper, we focus on maintaining the data quality in the scenarios which the transformed data will be used to build associative classification models. We propose a data quality metric for such the associative classification. Also, we propose a heuristic approach to preserve the privacy and maintain the data quality. Subsequently, we validate our proposed approaches with experiments.</abstract><pub>IEEE</pub><doi>10.1109/SNPD.2008.155</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769532639 |
ispartof | 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008, p.434-439 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4617410 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Data mining Data privacy Diseases Heuristic algorithms Optimized production technology Transforms |
title | Privacy Preserving of Associative Classification and Heuristic Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Privacy%20Preserving%20of%20Associative%20Classification%20and%20Heuristic%20Approach&rft.btitle=2008%20Ninth%20ACIS%20International%20Conference%20on%20Software%20Engineering,%20Artificial%20Intelligence,%20Networking,%20and%20Parallel/Distributed%20Computing&rft.au=Harnsamut,%20N.&rft.date=2008-08&rft.spage=434&rft.epage=439&rft.pages=434-439&rft.isbn=9780769532639&rft.isbn_list=0769532632&rft_id=info:doi/10.1109/SNPD.2008.155&rft_dat=%3Cieee_6IE%3E4617410%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d86bfa4a1c1918ad5a2452d1e5a9591c084f61cb4e89fc09c087d2422815d8bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4617410&rfr_iscdi=true |