Loading…
Expression-independent face recognition based on higher-order singular value decomposition
In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the traini...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2851 |
container_issue | |
container_start_page | 2846 |
container_title | |
container_volume | 5 |
creator | Hua-Chun Tan Yu-Jin Zhang |
description | In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate. |
doi_str_mv | 10.1109/ICMLC.2008.4620893 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4620893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4620893</ieee_id><sourcerecordid>4620893</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bde9a4d56e9364f3b649300a21ca5d28c5b20b898723b564c8db0b0cabb21933</originalsourceid><addsrcrecordid>eNo1kE9PAjEQxWuUREC-gF76BRanf7c9mg0iCcYLB-OFtNsBamB304LRb--qOId572Xye4ch5JbBlDGw94vqeVlNOYCZSs3BWHFBJrY0THIpOVgtL8noPyh5RYacaSiYEK8DMvrhLIAs2TWZ5PwO_QirtOBD8jb77BLmHNumiE3ADvvVHOnG1UgT1u22icf-SL3LGGhvdnG7w1S0KWCiOTbb094l-uH2J6ShBw5dm3-RGzLYuH3GyVnHZPU4W1VPxfJlvqgelkVkpToWPqB1MiiNVmi5EV5LKwAcZ7VTgZtaeQ7eWFNy4ZWWtQkePNTOe86sEGNy91cbEXHdpXhw6Wt9fpP4Bt9PWQ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Expression-independent face recognition based on higher-order singular value decomposition</title><source>IEEE Xplore All Conference Series</source><creator>Hua-Chun Tan ; Yu-Jin Zhang</creator><creatorcontrib>Hua-Chun Tan ; Yu-Jin Zhang</creatorcontrib><description>In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424420954</identifier><identifier>ISBN: 9781424420957</identifier><identifier>EISBN: 9781424420964</identifier><identifier>EISBN: 1424420962</identifier><identifier>DOI: 10.1109/ICMLC.2008.4620893</identifier><identifier>LCCN: 2008900471</identifier><language>eng</language><publisher>IEEE</publisher><subject>Expression ; Face ; Face recognition ; HOSVD ; Machine learning ; Support vector machine classification ; Tensile stress ; Training</subject><ispartof>2008 International Conference on Machine Learning and Cybernetics, 2008, Vol.5, p.2846-2851</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4620893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54542,54907,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4620893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hua-Chun Tan</creatorcontrib><creatorcontrib>Yu-Jin Zhang</creatorcontrib><title>Expression-independent face recognition based on higher-order singular value decomposition</title><title>2008 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.</description><subject>Expression</subject><subject>Face</subject><subject>Face recognition</subject><subject>HOSVD</subject><subject>Machine learning</subject><subject>Support vector machine classification</subject><subject>Tensile stress</subject><subject>Training</subject><issn>2160-133X</issn><isbn>1424420954</isbn><isbn>9781424420957</isbn><isbn>9781424420964</isbn><isbn>1424420962</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE9PAjEQxWuUREC-gF76BRanf7c9mg0iCcYLB-OFtNsBamB304LRb--qOId572Xye4ch5JbBlDGw94vqeVlNOYCZSs3BWHFBJrY0THIpOVgtL8noPyh5RYacaSiYEK8DMvrhLIAs2TWZ5PwO_QirtOBD8jb77BLmHNumiE3ADvvVHOnG1UgT1u22icf-SL3LGGhvdnG7w1S0KWCiOTbb094l-uH2J6ShBw5dm3-RGzLYuH3GyVnHZPU4W1VPxfJlvqgelkVkpToWPqB1MiiNVmi5EV5LKwAcZ7VTgZtaeQ7eWFNy4ZWWtQkePNTOe86sEGNy91cbEXHdpXhw6Wt9fpP4Bt9PWQ4</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Hua-Chun Tan</creator><creator>Yu-Jin Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>Expression-independent face recognition based on higher-order singular value decomposition</title><author>Hua-Chun Tan ; Yu-Jin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bde9a4d56e9364f3b649300a21ca5d28c5b20b898723b564c8db0b0cabb21933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Expression</topic><topic>Face</topic><topic>Face recognition</topic><topic>HOSVD</topic><topic>Machine learning</topic><topic>Support vector machine classification</topic><topic>Tensile stress</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hua-Chun Tan</creatorcontrib><creatorcontrib>Yu-Jin Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua-Chun Tan</au><au>Yu-Jin Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Expression-independent face recognition based on higher-order singular value decomposition</atitle><btitle>2008 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2008-07</date><risdate>2008</risdate><volume>5</volume><spage>2846</spage><epage>2851</epage><pages>2846-2851</pages><issn>2160-133X</issn><isbn>1424420954</isbn><isbn>9781424420957</isbn><eisbn>9781424420964</eisbn><eisbn>1424420962</eisbn><abstract>In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2008.4620893</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2008 International Conference on Machine Learning and Cybernetics, 2008, Vol.5, p.2846-2851 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_4620893 |
source | IEEE Xplore All Conference Series |
subjects | Expression Face Face recognition HOSVD Machine learning Support vector machine classification Tensile stress Training |
title | Expression-independent face recognition based on higher-order singular value decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Expression-independent%20face%20recognition%20based%20on%20higher-order%20singular%20value%20decomposition&rft.btitle=2008%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Hua-Chun%20Tan&rft.date=2008-07&rft.volume=5&rft.spage=2846&rft.epage=2851&rft.pages=2846-2851&rft.issn=2160-133X&rft.isbn=1424420954&rft.isbn_list=9781424420957&rft_id=info:doi/10.1109/ICMLC.2008.4620893&rft.eisbn=9781424420964&rft.eisbn_list=1424420962&rft_dat=%3Cieee_CHZPO%3E4620893%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bde9a4d56e9364f3b649300a21ca5d28c5b20b898723b564c8db0b0cabb21933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4620893&rfr_iscdi=true |