Loading…

Expression-independent face recognition based on higher-order singular value decomposition

In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the traini...

Full description

Saved in:
Bibliographic Details
Main Authors: Hua-Chun Tan, Yu-Jin Zhang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2851
container_issue
container_start_page 2846
container_title
container_volume 5
creator Hua-Chun Tan
Yu-Jin Zhang
description In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.
doi_str_mv 10.1109/ICMLC.2008.4620893
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4620893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4620893</ieee_id><sourcerecordid>4620893</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bde9a4d56e9364f3b649300a21ca5d28c5b20b898723b564c8db0b0cabb21933</originalsourceid><addsrcrecordid>eNo1kE9PAjEQxWuUREC-gF76BRanf7c9mg0iCcYLB-OFtNsBamB304LRb--qOId572Xye4ch5JbBlDGw94vqeVlNOYCZSs3BWHFBJrY0THIpOVgtL8noPyh5RYacaSiYEK8DMvrhLIAs2TWZ5PwO_QirtOBD8jb77BLmHNumiE3ADvvVHOnG1UgT1u22icf-SL3LGGhvdnG7w1S0KWCiOTbb094l-uH2J6ShBw5dm3-RGzLYuH3GyVnHZPU4W1VPxfJlvqgelkVkpToWPqB1MiiNVmi5EV5LKwAcZ7VTgZtaeQ7eWFNy4ZWWtQkePNTOe86sEGNy91cbEXHdpXhw6Wt9fpP4Bt9PWQ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Expression-independent face recognition based on higher-order singular value decomposition</title><source>IEEE Xplore All Conference Series</source><creator>Hua-Chun Tan ; Yu-Jin Zhang</creator><creatorcontrib>Hua-Chun Tan ; Yu-Jin Zhang</creatorcontrib><description>In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1424420954</identifier><identifier>ISBN: 9781424420957</identifier><identifier>EISBN: 9781424420964</identifier><identifier>EISBN: 1424420962</identifier><identifier>DOI: 10.1109/ICMLC.2008.4620893</identifier><identifier>LCCN: 2008900471</identifier><language>eng</language><publisher>IEEE</publisher><subject>Expression ; Face ; Face recognition ; HOSVD ; Machine learning ; Support vector machine classification ; Tensile stress ; Training</subject><ispartof>2008 International Conference on Machine Learning and Cybernetics, 2008, Vol.5, p.2846-2851</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4620893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54542,54907,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4620893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hua-Chun Tan</creatorcontrib><creatorcontrib>Yu-Jin Zhang</creatorcontrib><title>Expression-independent face recognition based on higher-order singular value decomposition</title><title>2008 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.</description><subject>Expression</subject><subject>Face</subject><subject>Face recognition</subject><subject>HOSVD</subject><subject>Machine learning</subject><subject>Support vector machine classification</subject><subject>Tensile stress</subject><subject>Training</subject><issn>2160-133X</issn><isbn>1424420954</isbn><isbn>9781424420957</isbn><isbn>9781424420964</isbn><isbn>1424420962</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE9PAjEQxWuUREC-gF76BRanf7c9mg0iCcYLB-OFtNsBamB304LRb--qOId572Xye4ch5JbBlDGw94vqeVlNOYCZSs3BWHFBJrY0THIpOVgtL8noPyh5RYacaSiYEK8DMvrhLIAs2TWZ5PwO_QirtOBD8jb77BLmHNumiE3ADvvVHOnG1UgT1u22icf-SL3LGGhvdnG7w1S0KWCiOTbb094l-uH2J6ShBw5dm3-RGzLYuH3GyVnHZPU4W1VPxfJlvqgelkVkpToWPqB1MiiNVmi5EV5LKwAcZ7VTgZtaeQ7eWFNy4ZWWtQkePNTOe86sEGNy91cbEXHdpXhw6Wt9fpP4Bt9PWQ4</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Hua-Chun Tan</creator><creator>Yu-Jin Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200807</creationdate><title>Expression-independent face recognition based on higher-order singular value decomposition</title><author>Hua-Chun Tan ; Yu-Jin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bde9a4d56e9364f3b649300a21ca5d28c5b20b898723b564c8db0b0cabb21933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Expression</topic><topic>Face</topic><topic>Face recognition</topic><topic>HOSVD</topic><topic>Machine learning</topic><topic>Support vector machine classification</topic><topic>Tensile stress</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hua-Chun Tan</creatorcontrib><creatorcontrib>Yu-Jin Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua-Chun Tan</au><au>Yu-Jin Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Expression-independent face recognition based on higher-order singular value decomposition</atitle><btitle>2008 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2008-07</date><risdate>2008</risdate><volume>5</volume><spage>2846</spage><epage>2851</epage><pages>2846-2851</pages><issn>2160-133X</issn><isbn>1424420954</isbn><isbn>9781424420957</isbn><eisbn>9781424420964</eisbn><eisbn>1424420962</eisbn><abstract>In this paper, a new method for extracting expression-independent face features based on HOSVD (higher-order singular value decomposition) is proposed and used for face recognition. In the new method, it is assumed that a facial expression could be represented by the facial expressions in the training set. In addition, the expression with higher similarity to the expression of test person has higher probability to represent the expression of test person. Expression-similarity weighted expression feature, which is the optimal estimation based on Bayesian estimation theory and the assumption, is used to estimate the face feature of the test person. As a result, the estimated face feature can reduce the influence of expression caused by insufficient training data and becomes less expression-dependent, and can be more robust to new expressions. The proposed method has been applied to Japanese Female Facial Expression (JAFFE) database. Expression-independent experimental results show the superiority of proposed method over the existing methods in terms of recognition rate and accumulative recognition rate.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2008.4620893</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2008 International Conference on Machine Learning and Cybernetics, 2008, Vol.5, p.2846-2851
issn 2160-133X
language eng
recordid cdi_ieee_primary_4620893
source IEEE Xplore All Conference Series
subjects Expression
Face
Face recognition
HOSVD
Machine learning
Support vector machine classification
Tensile stress
Training
title Expression-independent face recognition based on higher-order singular value decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Expression-independent%20face%20recognition%20based%20on%20higher-order%20singular%20value%20decomposition&rft.btitle=2008%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Hua-Chun%20Tan&rft.date=2008-07&rft.volume=5&rft.spage=2846&rft.epage=2851&rft.pages=2846-2851&rft.issn=2160-133X&rft.isbn=1424420954&rft.isbn_list=9781424420957&rft_id=info:doi/10.1109/ICMLC.2008.4620893&rft.eisbn=9781424420964&rft.eisbn_list=1424420962&rft_dat=%3Cieee_CHZPO%3E4620893%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bde9a4d56e9364f3b649300a21ca5d28c5b20b898723b564c8db0b0cabb21933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4620893&rfr_iscdi=true