Loading…

Capacity Achieving LDPC Codes Through Puncturing

The performance of punctured low-definition parity-check (LDPC) codes under maximum-likelihood (ML) decoding is studied in this correspondence via deriving and analyzing their average weight distributions (AWDs) and the corresponding asymptotic growth rate of the AWDs. In particular, it is proved th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2008-10, Vol.54 (10), p.4698-4706
Main Authors: Chun-Hao Hsu, Anastasopoulos, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The performance of punctured low-definition parity-check (LDPC) codes under maximum-likelihood (ML) decoding is studied in this correspondence via deriving and analyzing their average weight distributions (AWDs) and the corresponding asymptotic growth rate of the AWDs. In particular, it is proved that capacity-achieving codes of any rate and for any memoryless binary-input output-symmetric (MBIOS) channel under ML decoding can be constructed by puncturing some original LDPC code with small enough rate. Moreover, it is shown that the gap to capacity of all the punctured codes can be the same as the original code with a small enough rate. Conditions under which puncturing results in no rate loss with asymptotically high probability are also given in the process. These results show high potential for puncturing to be used in designing capacity-achieving codes, and in rate-compatible coding under any MBIOS channel.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.928274