Loading…
Improved differential evolution for dynamic optimization problems
This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 234 |
container_issue | |
container_start_page | 229 |
container_title | |
container_volume | |
creator | du Plessis, M.C. Engelbrecht, A.P. |
description | This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research. |
doi_str_mv | 10.1109/CEC.2008.4630804 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4630804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4630804</ieee_id><sourcerecordid>4630804</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-22bd26b069c45e551f827b51813943c235b5ad459bdfefdb46ebd85bbef6c8683</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhcdHwbZmL7jJH0icx53XsoRWCwU3Cu5KJnMHRvIiiYX66w1az-YsPs63OIQ8MJozRu1TsS1yTqnJQQlqKFyRxGrDgAMww4W-JktmgWWUcnVDVv-Aw-0MqLGZ1uZjQVazQ1uqlTV3JBnHTzoHpFCML8lm3_RDd0Kf-hgCDthOsaxTPHX11xS7Ng3dkPpzWzaxSrt-ik38Ln_BPHM1NuM9WYSyHjG59Jq877ZvxUt2eH3eF5tDFpmWU8a581w5qmwFEqVkwXDtJDNMWBAVF9LJ0oO0zgcM3oFC5410DoOqjDJiTR7_vBERj_0Qm3I4Hy_XiB9AM1HF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved differential evolution for dynamic optimization problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>du Plessis, M.C. ; Engelbrecht, A.P.</creator><creatorcontrib>du Plessis, M.C. ; Engelbrecht, A.P.</creatorcontrib><description>This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424418224</identifier><identifier>ISBN: 9781424418220</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424418237</identifier><identifier>EISBN: 1424418232</identifier><identifier>DOI: 10.1109/CEC.2008.4630804</identifier><identifier>LCCN: 2007907698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Correlation ; Evolution (biology) ; Evolutionary computation ; Heuristic algorithms ; Optimization ; Tracking</subject><ispartof>2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 2008, p.229-234</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4630804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54775,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4630804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>du Plessis, M.C.</creatorcontrib><creatorcontrib>Engelbrecht, A.P.</creatorcontrib><title>Improved differential evolution for dynamic optimization problems</title><title>2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)</title><addtitle>CEC</addtitle><description>This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.</description><subject>Benchmark testing</subject><subject>Correlation</subject><subject>Evolution (biology)</subject><subject>Evolutionary computation</subject><subject>Heuristic algorithms</subject><subject>Optimization</subject><subject>Tracking</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424418224</isbn><isbn>9781424418220</isbn><isbn>9781424418237</isbn><isbn>1424418232</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEtLw0AUhcdHwbZmL7jJH0icx53XsoRWCwU3Cu5KJnMHRvIiiYX66w1az-YsPs63OIQ8MJozRu1TsS1yTqnJQQlqKFyRxGrDgAMww4W-JktmgWWUcnVDVv-Aw-0MqLGZ1uZjQVazQ1uqlTV3JBnHTzoHpFCML8lm3_RDd0Kf-hgCDthOsaxTPHX11xS7Ng3dkPpzWzaxSrt-ik38Ln_BPHM1NuM9WYSyHjG59Jq877ZvxUt2eH3eF5tDFpmWU8a581w5qmwFEqVkwXDtJDNMWBAVF9LJ0oO0zgcM3oFC5410DoOqjDJiTR7_vBERj_0Qm3I4Hy_XiB9AM1HF</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>du Plessis, M.C.</creator><creator>Engelbrecht, A.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Improved differential evolution for dynamic optimization problems</title><author>du Plessis, M.C. ; Engelbrecht, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-22bd26b069c45e551f827b51813943c235b5ad459bdfefdb46ebd85bbef6c8683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Benchmark testing</topic><topic>Correlation</topic><topic>Evolution (biology)</topic><topic>Evolutionary computation</topic><topic>Heuristic algorithms</topic><topic>Optimization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>du Plessis, M.C.</creatorcontrib><creatorcontrib>Engelbrecht, A.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>du Plessis, M.C.</au><au>Engelbrecht, A.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved differential evolution for dynamic optimization problems</atitle><btitle>2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)</btitle><stitle>CEC</stitle><date>2008-06</date><risdate>2008</risdate><spage>229</spage><epage>234</epage><pages>229-234</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424418224</isbn><isbn>9781424418220</isbn><eisbn>9781424418237</eisbn><eisbn>1424418232</eisbn><abstract>This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2008.4630804</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 2008, p.229-234 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_4630804 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Correlation Evolution (biology) Evolutionary computation Heuristic algorithms Optimization Tracking |
title | Improved differential evolution for dynamic optimization problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20differential%20evolution%20for%20dynamic%20optimization%20problems&rft.btitle=2008%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=du%20Plessis,%20M.C.&rft.date=2008-06&rft.spage=229&rft.epage=234&rft.pages=229-234&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424418224&rft.isbn_list=9781424418220&rft_id=info:doi/10.1109/CEC.2008.4630804&rft.eisbn=9781424418237&rft.eisbn_list=1424418232&rft_dat=%3Cieee_6IE%3E4630804%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-22bd26b069c45e551f827b51813943c235b5ad459bdfefdb46ebd85bbef6c8683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4630804&rfr_iscdi=true |