Loading…

Improved differential evolution for dynamic optimization problems

This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak...

Full description

Saved in:
Bibliographic Details
Main Authors: du Plessis, M.C., Engelbrecht, A.P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 234
container_issue
container_start_page 229
container_title
container_volume
creator du Plessis, M.C.
Engelbrecht, A.P.
description This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.
doi_str_mv 10.1109/CEC.2008.4630804
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4630804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4630804</ieee_id><sourcerecordid>4630804</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-22bd26b069c45e551f827b51813943c235b5ad459bdfefdb46ebd85bbef6c8683</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhcdHwbZmL7jJH0icx53XsoRWCwU3Cu5KJnMHRvIiiYX66w1az-YsPs63OIQ8MJozRu1TsS1yTqnJQQlqKFyRxGrDgAMww4W-JktmgWWUcnVDVv-Aw-0MqLGZ1uZjQVazQ1uqlTV3JBnHTzoHpFCML8lm3_RDd0Kf-hgCDthOsaxTPHX11xS7Ng3dkPpzWzaxSrt-ik38Ln_BPHM1NuM9WYSyHjG59Jq877ZvxUt2eH3eF5tDFpmWU8a581w5qmwFEqVkwXDtJDNMWBAVF9LJ0oO0zgcM3oFC5410DoOqjDJiTR7_vBERj_0Qm3I4Hy_XiB9AM1HF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved differential evolution for dynamic optimization problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>du Plessis, M.C. ; Engelbrecht, A.P.</creator><creatorcontrib>du Plessis, M.C. ; Engelbrecht, A.P.</creatorcontrib><description>This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424418224</identifier><identifier>ISBN: 9781424418220</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424418237</identifier><identifier>EISBN: 1424418232</identifier><identifier>DOI: 10.1109/CEC.2008.4630804</identifier><identifier>LCCN: 2007907698</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Correlation ; Evolution (biology) ; Evolutionary computation ; Heuristic algorithms ; Optimization ; Tracking</subject><ispartof>2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 2008, p.229-234</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4630804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54775,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4630804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>du Plessis, M.C.</creatorcontrib><creatorcontrib>Engelbrecht, A.P.</creatorcontrib><title>Improved differential evolution for dynamic optimization problems</title><title>2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)</title><addtitle>CEC</addtitle><description>This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.</description><subject>Benchmark testing</subject><subject>Correlation</subject><subject>Evolution (biology)</subject><subject>Evolutionary computation</subject><subject>Heuristic algorithms</subject><subject>Optimization</subject><subject>Tracking</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424418224</isbn><isbn>9781424418220</isbn><isbn>9781424418237</isbn><isbn>1424418232</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEtLw0AUhcdHwbZmL7jJH0icx53XsoRWCwU3Cu5KJnMHRvIiiYX66w1az-YsPs63OIQ8MJozRu1TsS1yTqnJQQlqKFyRxGrDgAMww4W-JktmgWWUcnVDVv-Aw-0MqLGZ1uZjQVazQ1uqlTV3JBnHTzoHpFCML8lm3_RDd0Kf-hgCDthOsaxTPHX11xS7Ng3dkPpzWzaxSrt-ik38Ln_BPHM1NuM9WYSyHjG59Jq877ZvxUt2eH3eF5tDFpmWU8a581w5qmwFEqVkwXDtJDNMWBAVF9LJ0oO0zgcM3oFC5410DoOqjDJiTR7_vBERj_0Qm3I4Hy_XiB9AM1HF</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>du Plessis, M.C.</creator><creator>Engelbrecht, A.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200806</creationdate><title>Improved differential evolution for dynamic optimization problems</title><author>du Plessis, M.C. ; Engelbrecht, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-22bd26b069c45e551f827b51813943c235b5ad459bdfefdb46ebd85bbef6c8683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Benchmark testing</topic><topic>Correlation</topic><topic>Evolution (biology)</topic><topic>Evolutionary computation</topic><topic>Heuristic algorithms</topic><topic>Optimization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>du Plessis, M.C.</creatorcontrib><creatorcontrib>Engelbrecht, A.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>du Plessis, M.C.</au><au>Engelbrecht, A.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved differential evolution for dynamic optimization problems</atitle><btitle>2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)</btitle><stitle>CEC</stitle><date>2008-06</date><risdate>2008</risdate><spage>229</spage><epage>234</epage><pages>229-234</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424418224</isbn><isbn>9781424418220</isbn><eisbn>9781424418237</eisbn><eisbn>1424418232</eisbn><abstract>This article reports improvements on DynDE, a approach to using Differential Evolution to solve dynamic optimization problems. Three improvements are suggested, namely favored populations, migrating individuals and a combination of these approaches. The effects of varying the change frequency, peak widths and the number of dimensions of the dynamic environment are investigated. Experimental results are presented that indicate that the suggested approaches constitute considerable improvements on previous research.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2008.4630804</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 2008, p.229-234
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4630804
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Correlation
Evolution (biology)
Evolutionary computation
Heuristic algorithms
Optimization
Tracking
title Improved differential evolution for dynamic optimization problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20differential%20evolution%20for%20dynamic%20optimization%20problems&rft.btitle=2008%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20World%20Congress%20on%20Computational%20Intelligence)&rft.au=du%20Plessis,%20M.C.&rft.date=2008-06&rft.spage=229&rft.epage=234&rft.pages=229-234&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424418224&rft.isbn_list=9781424418220&rft_id=info:doi/10.1109/CEC.2008.4630804&rft.eisbn=9781424418237&rft.eisbn_list=1424418232&rft_dat=%3Cieee_6IE%3E4630804%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-22bd26b069c45e551f827b51813943c235b5ad459bdfefdb46ebd85bbef6c8683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4630804&rfr_iscdi=true