Loading…

One-dimensional Grey-level Co-occurrence Matrices for texture classification

The grey-level co-occurrence matrices (GLCM) has been widely used for various texture analysis implementations and has provided satisfying results. The conventional GLCM method is two dimensional as it focus on the co-occurrence of the specific pixel pairs. The one-dimensional GLCM reduces the matri...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Yi Tou, Yong Haur Tay, Phooi Yee Lau
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume 3
creator Jing Yi Tou
Yong Haur Tay
Phooi Yee Lau
description The grey-level co-occurrence matrices (GLCM) has been widely used for various texture analysis implementations and has provided satisfying results. The conventional GLCM method is two dimensional as it focus on the co-occurrence of the specific pixel pairs. The one-dimensional GLCM reduces the matrices to a single dimension by focusing only on the differences of the grey level between pixel pairs. The experiment results on 32 Brodatz textures shows that in a same setting, the one-dimensional GLCM achieved a recognition rate of 83.01% while the conventional GLCM achieved a recognition rate of 81.35%. The results show that the one-dimensional GLCM can perform as good as the conventional GLCM but with fewer computations involved.
doi_str_mv 10.1109/ITSIM.2008.4631992
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4631992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4631992</ieee_id><sourcerecordid>4631992</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1342-520ae8467963642b505aff0b67db7115555e3414dfe774434c7a87ff7df1bbc63</originalsourceid><addsrcrecordid>eNpVkE1PAjEYhGuURET-gF72DxT78fbraIgiCYSDeCbd7tukZtk17WLk34uBi3OZzOGZTIaQB85mnDP3tNy-L9czwZidgZbcOXFFps5YDgJASGH19b9s3A0ZC64Utc7IEbn7Qx0TFswtmZbyyU6SDpwyY7LadEibtMeupL7zbbXIeKQtfmNbzXvah3DIGbuA1doPOQUsVexzNeDPcMhYhdaXkmIKfjjh92QUfVtwevEJ-Xh92c7f6GqzWM6fVzRxCYIqwTxa0MZpqUHUiikfI6u1aWrDT8OVQgkcmojGAEgIxlsTo2kir-ug5YQ8nnsTIu6-ctr7fNxdzpG_55lTrA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>One-dimensional Grey-level Co-occurrence Matrices for texture classification</title><source>IEEE Xplore All Conference Series</source><creator>Jing Yi Tou ; Yong Haur Tay ; Phooi Yee Lau</creator><creatorcontrib>Jing Yi Tou ; Yong Haur Tay ; Phooi Yee Lau</creatorcontrib><description>The grey-level co-occurrence matrices (GLCM) has been widely used for various texture analysis implementations and has provided satisfying results. The conventional GLCM method is two dimensional as it focus on the co-occurrence of the specific pixel pairs. The one-dimensional GLCM reduces the matrices to a single dimension by focusing only on the differences of the grey level between pixel pairs. The experiment results on 32 Brodatz textures shows that in a same setting, the one-dimensional GLCM achieved a recognition rate of 83.01% while the conventional GLCM achieved a recognition rate of 81.35%. The results show that the one-dimensional GLCM can perform as good as the conventional GLCM but with fewer computations involved.</description><identifier>ISSN: 2155-8973</identifier><identifier>ISBN: 9781424423279</identifier><identifier>ISBN: 1424423279</identifier><identifier>EISBN: 9781424423286</identifier><identifier>EISBN: 1424423287</identifier><identifier>DOI: 10.1109/ITSIM.2008.4631992</identifier><identifier>LCCN: 2008902847</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distance measurement ; Entropy ; Feature extraction ; Neurons ; Pixel ; Testing ; Training</subject><ispartof>2008 International Symposium on Information Technology, 2008, Vol.3, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4631992$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4631992$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jing Yi Tou</creatorcontrib><creatorcontrib>Yong Haur Tay</creatorcontrib><creatorcontrib>Phooi Yee Lau</creatorcontrib><title>One-dimensional Grey-level Co-occurrence Matrices for texture classification</title><title>2008 International Symposium on Information Technology</title><addtitle>ITSIM</addtitle><description>The grey-level co-occurrence matrices (GLCM) has been widely used for various texture analysis implementations and has provided satisfying results. The conventional GLCM method is two dimensional as it focus on the co-occurrence of the specific pixel pairs. The one-dimensional GLCM reduces the matrices to a single dimension by focusing only on the differences of the grey level between pixel pairs. The experiment results on 32 Brodatz textures shows that in a same setting, the one-dimensional GLCM achieved a recognition rate of 83.01% while the conventional GLCM achieved a recognition rate of 81.35%. The results show that the one-dimensional GLCM can perform as good as the conventional GLCM but with fewer computations involved.</description><subject>Distance measurement</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Testing</subject><subject>Training</subject><issn>2155-8973</issn><isbn>9781424423279</isbn><isbn>1424423279</isbn><isbn>9781424423286</isbn><isbn>1424423287</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE1PAjEYhGuURET-gF72DxT78fbraIgiCYSDeCbd7tukZtk17WLk34uBi3OZzOGZTIaQB85mnDP3tNy-L9czwZidgZbcOXFFps5YDgJASGH19b9s3A0ZC64Utc7IEbn7Qx0TFswtmZbyyU6SDpwyY7LadEibtMeupL7zbbXIeKQtfmNbzXvah3DIGbuA1doPOQUsVexzNeDPcMhYhdaXkmIKfjjh92QUfVtwevEJ-Xh92c7f6GqzWM6fVzRxCYIqwTxa0MZpqUHUiikfI6u1aWrDT8OVQgkcmojGAEgIxlsTo2kir-ug5YQ8nnsTIu6-ctr7fNxdzpG_55lTrA</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Jing Yi Tou</creator><creator>Yong Haur Tay</creator><creator>Phooi Yee Lau</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>One-dimensional Grey-level Co-occurrence Matrices for texture classification</title><author>Jing Yi Tou ; Yong Haur Tay ; Phooi Yee Lau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1342-520ae8467963642b505aff0b67db7115555e3414dfe774434c7a87ff7df1bbc63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Distance measurement</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jing Yi Tou</creatorcontrib><creatorcontrib>Yong Haur Tay</creatorcontrib><creatorcontrib>Phooi Yee Lau</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jing Yi Tou</au><au>Yong Haur Tay</au><au>Phooi Yee Lau</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One-dimensional Grey-level Co-occurrence Matrices for texture classification</atitle><btitle>2008 International Symposium on Information Technology</btitle><stitle>ITSIM</stitle><date>2008-08</date><risdate>2008</risdate><volume>3</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2155-8973</issn><isbn>9781424423279</isbn><isbn>1424423279</isbn><eisbn>9781424423286</eisbn><eisbn>1424423287</eisbn><abstract>The grey-level co-occurrence matrices (GLCM) has been widely used for various texture analysis implementations and has provided satisfying results. The conventional GLCM method is two dimensional as it focus on the co-occurrence of the specific pixel pairs. The one-dimensional GLCM reduces the matrices to a single dimension by focusing only on the differences of the grey level between pixel pairs. The experiment results on 32 Brodatz textures shows that in a same setting, the one-dimensional GLCM achieved a recognition rate of 83.01% while the conventional GLCM achieved a recognition rate of 81.35%. The results show that the one-dimensional GLCM can perform as good as the conventional GLCM but with fewer computations involved.</abstract><pub>IEEE</pub><doi>10.1109/ITSIM.2008.4631992</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-8973
ispartof 2008 International Symposium on Information Technology, 2008, Vol.3, p.1-6
issn 2155-8973
language eng
recordid cdi_ieee_primary_4631992
source IEEE Xplore All Conference Series
subjects Distance measurement
Entropy
Feature extraction
Neurons
Pixel
Testing
Training
title One-dimensional Grey-level Co-occurrence Matrices for texture classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One-dimensional%20Grey-level%20Co-occurrence%20Matrices%20for%20texture%20classification&rft.btitle=2008%20International%20Symposium%20on%20Information%20Technology&rft.au=Jing%20Yi%20Tou&rft.date=2008-08&rft.volume=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2155-8973&rft.isbn=9781424423279&rft.isbn_list=1424423279&rft_id=info:doi/10.1109/ITSIM.2008.4631992&rft.eisbn=9781424423286&rft.eisbn_list=1424423287&rft_dat=%3Cieee_CHZPO%3E4631992%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1342-520ae8467963642b505aff0b67db7115555e3414dfe774434c7a87ff7df1bbc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4631992&rfr_iscdi=true