Loading…
Feature extraction for murmur detection based on support vector regression of time-frequency representations
This paper presents a nonlinear approach for time-frequency representations (TFR) data analysis, based on a statistical learning methodology - support vector regression (SVR), that being a nonlinear framework, matches recent findings on the underlying dynamics of cardiac mechanic activity and phonoc...
Saved in:
Published in: | 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008-01, p.1623-1626 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1626 |
container_issue | |
container_start_page | 1623 |
container_title | 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | |
creator | Jaramillo-Garzon, J. Quiceno-Manrique, A. Godino-Llorente, I. Castellanos-Dominguez, C.G. |
description | This paper presents a nonlinear approach for time-frequency representations (TFR) data analysis, based on a statistical learning methodology - support vector regression (SVR), that being a nonlinear framework, matches recent findings on the underlying dynamics of cardiac mechanic activity and phonocardiographic (PCG) recordings. The proposed methodology aims to model the estimated TFRs, and extract relevant features to perform classification between normal and pathologic PCG recordings (with murmur). Modeling of TFR is done by means of SVR, and the distance between regressions is calculated through dissimilarity measures based on dot product. Finally, a k-nn classifier is used for the classification stage, obtaining a validation performance of 97.85%. |
doi_str_mv | 10.1109/IEMBS.2008.4649484 |
format | article |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4649484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4649484</ieee_id><sourcerecordid>4649484</sourcerecordid><originalsourceid>FETCH-LOGICAL-i413t-b6d01adce7e65fc42adac136b09f0ecde9b67c7c00b1976d23cec06458e8d7193</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2faFX6AnDJC6R4E_8eoWqhUhEHQOJWOfYGBbVNsB3Uvj2u2gurkWa132gOS8gt0AkA1feL2cvj26SgVE2YYJopdkbGWipgBWOggBfnZAicq5wJ4Bf_GOOXiVHNcqHk54CMQ_imaRgvhaLXZAAaRKGVHJL1HE3sPWa4i97Y2LTbrG59tul9UuYw4vFYmYAuS0vou671MftNIAU9fnkM4RBp6yw2G8xrjz89bu0-wS5B3EZz6Ag35Ko264Djk4_Ix3z2Pn3Ol69Pi-nDMm8YlDGvhKNgnEWJgteWFcYZC6WoqK4pWoe6EtJKS2kFWgpXlBYtFYwrVE6CLkfk7tjbIOKq883G-P3q9MbyD4WYY94</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Feature extraction for murmur detection based on support vector regression of time-frequency representations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaramillo-Garzon, J. ; Quiceno-Manrique, A. ; Godino-Llorente, I. ; Castellanos-Dominguez, C.G.</creator><creatorcontrib>Jaramillo-Garzon, J. ; Quiceno-Manrique, A. ; Godino-Llorente, I. ; Castellanos-Dominguez, C.G.</creatorcontrib><description>This paper presents a nonlinear approach for time-frequency representations (TFR) data analysis, based on a statistical learning methodology - support vector regression (SVR), that being a nonlinear framework, matches recent findings on the underlying dynamics of cardiac mechanic activity and phonocardiographic (PCG) recordings. The proposed methodology aims to model the estimated TFRs, and extract relevant features to perform classification between normal and pathologic PCG recordings (with murmur). Modeling of TFR is done by means of SVR, and the distance between regressions is calculated through dissimilarity measures based on dot product. Finally, a k-nn classifier is used for the classification stage, obtaining a validation performance of 97.85%.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9781424418145</identifier><identifier>ISBN: 1424418143</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424418152</identifier><identifier>EISBN: 1424418151</identifier><identifier>DOI: 10.1109/IEMBS.2008.4649484</identifier><identifier>PMID: 19162987</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Kernel ; Phonocardiography ; Prototypes ; Support vector machines ; Time-frequency analysis ; Training</subject><ispartof>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008-01, p.1623-1626</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4649484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4649484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaramillo-Garzon, J.</creatorcontrib><creatorcontrib>Quiceno-Manrique, A.</creatorcontrib><creatorcontrib>Godino-Llorente, I.</creatorcontrib><creatorcontrib>Castellanos-Dominguez, C.G.</creatorcontrib><title>Feature extraction for murmur detection based on support vector regression of time-frequency representations</title><title>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>This paper presents a nonlinear approach for time-frequency representations (TFR) data analysis, based on a statistical learning methodology - support vector regression (SVR), that being a nonlinear framework, matches recent findings on the underlying dynamics of cardiac mechanic activity and phonocardiographic (PCG) recordings. The proposed methodology aims to model the estimated TFRs, and extract relevant features to perform classification between normal and pathologic PCG recordings (with murmur). Modeling of TFR is done by means of SVR, and the distance between regressions is calculated through dissimilarity measures based on dot product. Finally, a k-nn classifier is used for the classification stage, obtaining a validation performance of 97.85%.</description><subject>Feature extraction</subject><subject>Kernel</subject><subject>Phonocardiography</subject><subject>Prototypes</subject><subject>Support vector machines</subject><subject>Time-frequency analysis</subject><subject>Training</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9781424418145</isbn><isbn>1424418143</isbn><isbn>9781424418152</isbn><isbn>1424418151</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1OwzAQhM2faFX6AnDJC6R4E_8eoWqhUhEHQOJWOfYGBbVNsB3Uvj2u2gurkWa132gOS8gt0AkA1feL2cvj26SgVE2YYJopdkbGWipgBWOggBfnZAicq5wJ4Bf_GOOXiVHNcqHk54CMQ_imaRgvhaLXZAAaRKGVHJL1HE3sPWa4i97Y2LTbrG59tul9UuYw4vFYmYAuS0vou671MftNIAU9fnkM4RBp6yw2G8xrjz89bu0-wS5B3EZz6Ag35Ko264Djk4_Ix3z2Pn3Ol69Pi-nDMm8YlDGvhKNgnEWJgteWFcYZC6WoqK4pWoe6EtJKS2kFWgpXlBYtFYwrVE6CLkfk7tjbIOKq883G-P3q9MbyD4WYY94</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Jaramillo-Garzon, J.</creator><creator>Quiceno-Manrique, A.</creator><creator>Godino-Llorente, I.</creator><creator>Castellanos-Dominguez, C.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Feature extraction for murmur detection based on support vector regression of time-frequency representations</title><author>Jaramillo-Garzon, J. ; Quiceno-Manrique, A. ; Godino-Llorente, I. ; Castellanos-Dominguez, C.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i413t-b6d01adce7e65fc42adac136b09f0ecde9b67c7c00b1976d23cec06458e8d7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Feature extraction</topic><topic>Kernel</topic><topic>Phonocardiography</topic><topic>Prototypes</topic><topic>Support vector machines</topic><topic>Time-frequency analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaramillo-Garzon, J.</creatorcontrib><creatorcontrib>Quiceno-Manrique, A.</creatorcontrib><creatorcontrib>Godino-Llorente, I.</creatorcontrib><creatorcontrib>Castellanos-Dominguez, C.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><jtitle>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaramillo-Garzon, J.</au><au>Quiceno-Manrique, A.</au><au>Godino-Llorente, I.</au><au>Castellanos-Dominguez, C.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature extraction for murmur detection based on support vector regression of time-frequency representations</atitle><jtitle>2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>1623</spage><epage>1626</epage><pages>1623-1626</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9781424418145</isbn><isbn>1424418143</isbn><eisbn>9781424418152</eisbn><eisbn>1424418151</eisbn><abstract>This paper presents a nonlinear approach for time-frequency representations (TFR) data analysis, based on a statistical learning methodology - support vector regression (SVR), that being a nonlinear framework, matches recent findings on the underlying dynamics of cardiac mechanic activity and phonocardiographic (PCG) recordings. The proposed methodology aims to model the estimated TFRs, and extract relevant features to perform classification between normal and pathologic PCG recordings (with murmur). Modeling of TFR is done by means of SVR, and the distance between regressions is calculated through dissimilarity measures based on dot product. Finally, a k-nn classifier is used for the classification stage, obtaining a validation performance of 97.85%.</abstract><pub>IEEE</pub><pmid>19162987</pmid><doi>10.1109/IEMBS.2008.4649484</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008-01, p.1623-1626 |
issn | 1094-687X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_4649484 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature extraction Kernel Phonocardiography Prototypes Support vector machines Time-frequency analysis Training |
title | Feature extraction for murmur detection based on support vector regression of time-frequency representations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20extraction%20for%20murmur%20detection%20based%20on%20support%20vector%20regression%20of%20time-frequency%20representations&rft.jtitle=2008%2030th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Jaramillo-Garzon,%20J.&rft.date=2008-01-01&rft.spage=1623&rft.epage=1626&rft.pages=1623-1626&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424418145&rft.isbn_list=1424418143&rft_id=info:doi/10.1109/IEMBS.2008.4649484&rft.eisbn=9781424418152&rft.eisbn_list=1424418151&rft_dat=%3Cieee_6IE%3E4649484%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i413t-b6d01adce7e65fc42adac136b09f0ecde9b67c7c00b1976d23cec06458e8d7193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19162987&rft_ieee_id=4649484&rfr_iscdi=true |