Loading…

Recognition of human driving behaviors based on stochastic symbolization of time series signal

This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognitio...

Full description

Saved in:
Bibliographic Details
Main Authors: Takano, W., Matsushita, A., Iwao, K., Nakamura, Y.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 172
container_issue
container_start_page 167
container_title
container_volume
creator Takano, W.
Matsushita, A.
Iwao, K.
Nakamura, Y.
description This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.
doi_str_mv 10.1109/IROS.2008.4650671
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4650671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4650671</ieee_id><sourcerecordid>4650671</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-5be9f451f3e706f30723b1c4afca421fea813e40a374e26f370b081386b863ca3</originalsourceid><addsrcrecordid>eNpVUMtKw0AUHR8Fa-0HiJv5gdQ778lSitVCoVB1a5lJ76QjTSKZWKhfb8QqeDYHzmtxCLlmMGEM8tv5avk04QB2IrUCbdgJGefGMsml5KAsPyVDzpTIwGp99s8z6vzPU3ZALr9ncgBm9QUZp_QGPaQSkqsheV1h0ZR17GJT0ybQ7Uflarpp4z7WJfW4dfvYtIl6l3BD-0zqmmLrUhcLmg6Vb3bx0_2Wu1ghTdhGTDTFsna7KzIIbpdwfOQReZndP08fs8XyYT69W2SRS9ZlymMepGJBoAEdBBguPCukC4WTnAV0lgmU4ISRyPuAAQ-9ZLW3WhROjMjNz25ExPV7GyvXHtbH68QXgh9cYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of human driving behaviors based on stochastic symbolization of time series signal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takano, W. ; Matsushita, A. ; Iwao, K. ; Nakamura, Y.</creator><creatorcontrib>Takano, W. ; Matsushita, A. ; Iwao, K. ; Nakamura, Y.</creatorcontrib><description>This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424420575</identifier><identifier>ISBN: 1424420571</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424420582</identifier><identifier>EISBN: 142442058X</identifier><identifier>DOI: 10.1109/IROS.2008.4650671</identifier><identifier>LCCN: 2008900186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Driver circuits ; Hidden Markov models ; Pattern recognition ; Time series analysis ; Trajectory ; Vehicles</subject><ispartof>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.167-172</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4650671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4650671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takano, W.</creatorcontrib><creatorcontrib>Matsushita, A.</creatorcontrib><creatorcontrib>Iwao, K.</creatorcontrib><creatorcontrib>Nakamura, Y.</creatorcontrib><title>Recognition of human driving behaviors based on stochastic symbolization of time series signal</title><title>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.</description><subject>Acceleration</subject><subject>Driver circuits</subject><subject>Hidden Markov models</subject><subject>Pattern recognition</subject><subject>Time series analysis</subject><subject>Trajectory</subject><subject>Vehicles</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424420575</isbn><isbn>1424420571</isbn><isbn>9781424420582</isbn><isbn>142442058X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtKw0AUHR8Fa-0HiJv5gdQ778lSitVCoVB1a5lJ76QjTSKZWKhfb8QqeDYHzmtxCLlmMGEM8tv5avk04QB2IrUCbdgJGefGMsml5KAsPyVDzpTIwGp99s8z6vzPU3ZALr9ncgBm9QUZp_QGPaQSkqsheV1h0ZR17GJT0ybQ7Uflarpp4z7WJfW4dfvYtIl6l3BD-0zqmmLrUhcLmg6Vb3bx0_2Wu1ghTdhGTDTFsna7KzIIbpdwfOQReZndP08fs8XyYT69W2SRS9ZlymMepGJBoAEdBBguPCukC4WTnAV0lgmU4ISRyPuAAQ-9ZLW3WhROjMjNz25ExPV7GyvXHtbH68QXgh9cYw</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Takano, W.</creator><creator>Matsushita, A.</creator><creator>Iwao, K.</creator><creator>Nakamura, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200809</creationdate><title>Recognition of human driving behaviors based on stochastic symbolization of time series signal</title><author>Takano, W. ; Matsushita, A. ; Iwao, K. ; Nakamura, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-5be9f451f3e706f30723b1c4afca421fea813e40a374e26f370b081386b863ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Driver circuits</topic><topic>Hidden Markov models</topic><topic>Pattern recognition</topic><topic>Time series analysis</topic><topic>Trajectory</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Takano, W.</creatorcontrib><creatorcontrib>Matsushita, A.</creatorcontrib><creatorcontrib>Iwao, K.</creatorcontrib><creatorcontrib>Nakamura, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takano, W.</au><au>Matsushita, A.</au><au>Iwao, K.</au><au>Nakamura, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of human driving behaviors based on stochastic symbolization of time series signal</atitle><btitle>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2008-09</date><risdate>2008</risdate><spage>167</spage><epage>172</epage><pages>167-172</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424420575</isbn><isbn>1424420571</isbn><eisbn>9781424420582</eisbn><eisbn>142442058X</eisbn><abstract>This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2008.4650671</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.167-172
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_4650671
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Driver circuits
Hidden Markov models
Pattern recognition
Time series analysis
Trajectory
Vehicles
title Recognition of human driving behaviors based on stochastic symbolization of time series signal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20human%20driving%20behaviors%20based%20on%20stochastic%20symbolization%20of%20time%20series%20signal&rft.btitle=2008%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Takano,%20W.&rft.date=2008-09&rft.spage=167&rft.epage=172&rft.pages=167-172&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424420575&rft.isbn_list=1424420571&rft_id=info:doi/10.1109/IROS.2008.4650671&rft.eisbn=9781424420582&rft.eisbn_list=142442058X&rft_dat=%3Cieee_6IE%3E4650671%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-5be9f451f3e706f30723b1c4afca421fea813e40a374e26f370b081386b863ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4650671&rfr_iscdi=true