Loading…
Recognition of human driving behaviors based on stochastic symbolization of time series signal
This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognitio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 172 |
container_issue | |
container_start_page | 167 |
container_title | |
container_volume | |
creator | Takano, W. Matsushita, A. Iwao, K. Nakamura, Y. |
description | This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately. |
doi_str_mv | 10.1109/IROS.2008.4650671 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4650671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4650671</ieee_id><sourcerecordid>4650671</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-5be9f451f3e706f30723b1c4afca421fea813e40a374e26f370b081386b863ca3</originalsourceid><addsrcrecordid>eNpVUMtKw0AUHR8Fa-0HiJv5gdQ778lSitVCoVB1a5lJ76QjTSKZWKhfb8QqeDYHzmtxCLlmMGEM8tv5avk04QB2IrUCbdgJGefGMsml5KAsPyVDzpTIwGp99s8z6vzPU3ZALr9ncgBm9QUZp_QGPaQSkqsheV1h0ZR17GJT0ybQ7Uflarpp4z7WJfW4dfvYtIl6l3BD-0zqmmLrUhcLmg6Vb3bx0_2Wu1ghTdhGTDTFsna7KzIIbpdwfOQReZndP08fs8XyYT69W2SRS9ZlymMepGJBoAEdBBguPCukC4WTnAV0lgmU4ISRyPuAAQ-9ZLW3WhROjMjNz25ExPV7GyvXHtbH68QXgh9cYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of human driving behaviors based on stochastic symbolization of time series signal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takano, W. ; Matsushita, A. ; Iwao, K. ; Nakamura, Y.</creator><creatorcontrib>Takano, W. ; Matsushita, A. ; Iwao, K. ; Nakamura, Y.</creatorcontrib><description>This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424420575</identifier><identifier>ISBN: 1424420571</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424420582</identifier><identifier>EISBN: 142442058X</identifier><identifier>DOI: 10.1109/IROS.2008.4650671</identifier><identifier>LCCN: 2008900186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Driver circuits ; Hidden Markov models ; Pattern recognition ; Time series analysis ; Trajectory ; Vehicles</subject><ispartof>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.167-172</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4650671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4650671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takano, W.</creatorcontrib><creatorcontrib>Matsushita, A.</creatorcontrib><creatorcontrib>Iwao, K.</creatorcontrib><creatorcontrib>Nakamura, Y.</creatorcontrib><title>Recognition of human driving behaviors based on stochastic symbolization of time series signal</title><title>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.</description><subject>Acceleration</subject><subject>Driver circuits</subject><subject>Hidden Markov models</subject><subject>Pattern recognition</subject><subject>Time series analysis</subject><subject>Trajectory</subject><subject>Vehicles</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424420575</isbn><isbn>1424420571</isbn><isbn>9781424420582</isbn><isbn>142442058X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtKw0AUHR8Fa-0HiJv5gdQ778lSitVCoVB1a5lJ76QjTSKZWKhfb8QqeDYHzmtxCLlmMGEM8tv5avk04QB2IrUCbdgJGefGMsml5KAsPyVDzpTIwGp99s8z6vzPU3ZALr9ncgBm9QUZp_QGPaQSkqsheV1h0ZR17GJT0ybQ7Uflarpp4z7WJfW4dfvYtIl6l3BD-0zqmmLrUhcLmg6Vb3bx0_2Wu1ghTdhGTDTFsna7KzIIbpdwfOQReZndP08fs8XyYT69W2SRS9ZlymMepGJBoAEdBBguPCukC4WTnAV0lgmU4ISRyPuAAQ-9ZLW3WhROjMjNz25ExPV7GyvXHtbH68QXgh9cYw</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Takano, W.</creator><creator>Matsushita, A.</creator><creator>Iwao, K.</creator><creator>Nakamura, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200809</creationdate><title>Recognition of human driving behaviors based on stochastic symbolization of time series signal</title><author>Takano, W. ; Matsushita, A. ; Iwao, K. ; Nakamura, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-5be9f451f3e706f30723b1c4afca421fea813e40a374e26f370b081386b863ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Driver circuits</topic><topic>Hidden Markov models</topic><topic>Pattern recognition</topic><topic>Time series analysis</topic><topic>Trajectory</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Takano, W.</creatorcontrib><creatorcontrib>Matsushita, A.</creatorcontrib><creatorcontrib>Iwao, K.</creatorcontrib><creatorcontrib>Nakamura, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takano, W.</au><au>Matsushita, A.</au><au>Iwao, K.</au><au>Nakamura, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of human driving behaviors based on stochastic symbolization of time series signal</atitle><btitle>2008 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2008-09</date><risdate>2008</risdate><spage>167</spage><epage>172</epage><pages>167-172</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424420575</isbn><isbn>1424420571</isbn><eisbn>9781424420582</eisbn><eisbn>142442058X</eisbn><abstract>This paper describes an imitative learning of driving time series data for intellectual cognition toward future automobiles. The driving pattern primitives consisting of states of the environment, vehicle and driver are symbolized by hidden Markov models (HMMs), which can be used for both recognition and generation of the driving patterns. The relationship among the HMMs can be represented by locating the HMMs in a multidimensional space. The contribution of each variable to the HMM space can be analyzed such that important variables can be selected out of the driving data in order to reduce the size of the HMMs. Moreover, this paper presents a hierarchical model with the HMMs abstracting the primitive driving patterns in the lower layer, and another HMMs abstracting the longterm contextual driving patterns which are representation in the HMM space. Tests with a driving simulator and a actual vehicle demonstrate not only the validity of symbolization of driving pattern primitives, recognition and generation, but also availability of key feature selection. The extended hierarchical model is also proved to have a potential to predict the driving data appropriately.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2008.4650671</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, p.167-172 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_4650671 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Driver circuits Hidden Markov models Pattern recognition Time series analysis Trajectory Vehicles |
title | Recognition of human driving behaviors based on stochastic symbolization of time series signal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20human%20driving%20behaviors%20based%20on%20stochastic%20symbolization%20of%20time%20series%20signal&rft.btitle=2008%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Takano,%20W.&rft.date=2008-09&rft.spage=167&rft.epage=172&rft.pages=167-172&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424420575&rft.isbn_list=1424420571&rft_id=info:doi/10.1109/IROS.2008.4650671&rft.eisbn=9781424420582&rft.eisbn_list=142442058X&rft_dat=%3Cieee_6IE%3E4650671%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-5be9f451f3e706f30723b1c4afca421fea813e40a374e26f370b081386b863ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4650671&rfr_iscdi=true |