Loading…

Fundamentals of spatial and Doppler frequencies in radar STAP

The increasing interest for arbitrary antenna arrays in radar space-time adaptive processing (STAP) creates a need for a thorough understanding of the role of, and dependencies between, spatial and Doppler frequencies and related quantities, especially in the characterization of clutter. We successi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2008-07, Vol.44 (3), p.1118-1135
Main Authors: Ries, P., Neyt, X., Lapierre, F.D., Verly, J.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increasing interest for arbitrary antenna arrays in radar space-time adaptive processing (STAP) creates a need for a thorough understanding of the role of, and dependencies between, spatial and Doppler frequencies and related quantities, especially in the characterization of clutter. We successively introduce ldquogeometricalrdquo and statistical concepts, where we respectively emphasize the 4D direction-Doppler (DD) curve and the 4D power spectral density (PSD) that characterize the (clutter) space-time field. These descriptors, which are flight-configuration dependent, but antenna independent, are fundamental since they can be used to derive the key spectral properties of any antenna, essentially by rotations and projections. These descriptors are related in various ways, mostly because the DD curve is the support of the ridge of the clutter PSD. We also emphasize the surprising benefits of systematically considering the three spatial frequencies that are always present behind the scene, even for the customary linear antenna. A solid, simple, and elegant basis for thinking about STAP for arbitrary measurement configurations and antenna arrays is provided.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2008.4655368