Loading…
Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm
The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 504 |
container_issue | |
container_start_page | 501 |
container_title | |
container_volume | |
creator | Tse Guan Tan Teo, J. Hui Keng Lau |
description | The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric. |
doi_str_mv | 10.1109/ICIAS.2007.4658439 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4658439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4658439</ieee_id><sourcerecordid>4658439</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-834fa68e03e7b82154ccd280a20463148ae31bca87fb7a9a02503f80f9aea4bb3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI1QJaDkBeCSF0hY_8X2MYoCjVTEoXCuNsEGV04TJWmlvj0ByoG9zI6-1Wo0hNxRSCkF81AVVb5JGYBKRSa14OaCREZpKpgQlMsMLv95yRfk5vvcMJ1xekWicdzBPNxIAeyabMq294NvMMS4x3Aa_Rh3Li66treTn_zRzrs9duEw-W4fPx_CrPXONj-o_AM4nOI8fHSDnz7bW7JwGEYbnXVJ3h7L12KVrF-eqiJfJ54qOSWaC4eZtsCtqjWjUjTNO9OADMScVWi0nNYNauVqhQaBSeBOgzNoUdQ1X5L737_eWrvtB9_OMbbnXvgX1eZVwA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tse Guan Tan ; Teo, J. ; Hui Keng Lau</creator><creatorcontrib>Tse Guan Tan ; Teo, J. ; Hui Keng Lau</creatorcontrib><description>The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.</description><identifier>ISBN: 9781424413553</identifier><identifier>ISBN: 1424413559</identifier><identifier>EISBN: 9781424413560</identifier><identifier>EISBN: 1424413567</identifier><identifier>DOI: 10.1109/ICIAS.2007.4658439</identifier><identifier>LCCN: 2007928631</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Distance measurement ; Evolutionary computation ; Genetic algorithms ; Laboratories ; Optimization ; Polynomials</subject><ispartof>2007 International Conference on Intelligent and Advanced Systems, 2007, p.501-504</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4658439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4658439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tse Guan Tan</creatorcontrib><creatorcontrib>Teo, J.</creatorcontrib><creatorcontrib>Hui Keng Lau</creatorcontrib><title>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</title><title>2007 International Conference on Intelligent and Advanced Systems</title><addtitle>ICIAS</addtitle><description>The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.</description><subject>Artificial intelligence</subject><subject>Distance measurement</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Laboratories</subject><subject>Optimization</subject><subject>Polynomials</subject><isbn>9781424413553</isbn><isbn>1424413559</isbn><isbn>9781424413560</isbn><isbn>1424413567</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1OwzAQhI1QJaDkBeCSF0hY_8X2MYoCjVTEoXCuNsEGV04TJWmlvj0ByoG9zI6-1Wo0hNxRSCkF81AVVb5JGYBKRSa14OaCREZpKpgQlMsMLv95yRfk5vvcMJ1xekWicdzBPNxIAeyabMq294NvMMS4x3Aa_Rh3Li66treTn_zRzrs9duEw-W4fPx_CrPXONj-o_AM4nOI8fHSDnz7bW7JwGEYbnXVJ3h7L12KVrF-eqiJfJ54qOSWaC4eZtsCtqjWjUjTNO9OADMScVWi0nNYNauVqhQaBSeBOgzNoUdQ1X5L737_eWrvtB9_OMbbnXvgX1eZVwA</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Tse Guan Tan</creator><creator>Teo, J.</creator><creator>Hui Keng Lau</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</title><author>Tse Guan Tan ; Teo, J. ; Hui Keng Lau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-834fa68e03e7b82154ccd280a20463148ae31bca87fb7a9a02503f80f9aea4bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Distance measurement</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Laboratories</topic><topic>Optimization</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Tse Guan Tan</creatorcontrib><creatorcontrib>Teo, J.</creatorcontrib><creatorcontrib>Hui Keng Lau</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tse Guan Tan</au><au>Teo, J.</au><au>Hui Keng Lau</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</atitle><btitle>2007 International Conference on Intelligent and Advanced Systems</btitle><stitle>ICIAS</stitle><date>2007-11</date><risdate>2007</risdate><spage>501</spage><epage>504</epage><pages>501-504</pages><isbn>9781424413553</isbn><isbn>1424413559</isbn><eisbn>9781424413560</eisbn><eisbn>1424413567</eisbn><abstract>The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.</abstract><pub>IEEE</pub><doi>10.1109/ICIAS.2007.4658439</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424413553 |
ispartof | 2007 International Conference on Intelligent and Advanced Systems, 2007, p.501-504 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4658439 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Distance measurement Evolutionary computation Genetic algorithms Laboratories Optimization Polynomials |
title | Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Empirical%20analysis%20of%20Competitive%20Coevolution%20Multiobjective%20Evolutionary%20Algorithm&rft.btitle=2007%20International%20Conference%20on%20Intelligent%20and%20Advanced%20Systems&rft.au=Tse%20Guan%20Tan&rft.date=2007-11&rft.spage=501&rft.epage=504&rft.pages=501-504&rft.isbn=9781424413553&rft.isbn_list=1424413559&rft_id=info:doi/10.1109/ICIAS.2007.4658439&rft.eisbn=9781424413560&rft.eisbn_list=1424413567&rft_dat=%3Cieee_6IE%3E4658439%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-834fa68e03e7b82154ccd280a20463148ae31bca87fb7a9a02503f80f9aea4bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4658439&rfr_iscdi=true |