Loading…

Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm

The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE...

Full description

Saved in:
Bibliographic Details
Main Authors: Tse Guan Tan, Teo, J., Hui Keng Lau
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 504
container_issue
container_start_page 501
container_title
container_volume
creator Tse Guan Tan
Teo, J.
Hui Keng Lau
description The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.
doi_str_mv 10.1109/ICIAS.2007.4658439
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4658439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4658439</ieee_id><sourcerecordid>4658439</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-834fa68e03e7b82154ccd280a20463148ae31bca87fb7a9a02503f80f9aea4bb3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI1QJaDkBeCSF0hY_8X2MYoCjVTEoXCuNsEGV04TJWmlvj0ByoG9zI6-1Wo0hNxRSCkF81AVVb5JGYBKRSa14OaCREZpKpgQlMsMLv95yRfk5vvcMJ1xekWicdzBPNxIAeyabMq294NvMMS4x3Aa_Rh3Li66treTn_zRzrs9duEw-W4fPx_CrPXONj-o_AM4nOI8fHSDnz7bW7JwGEYbnXVJ3h7L12KVrF-eqiJfJ54qOSWaC4eZtsCtqjWjUjTNO9OADMScVWi0nNYNauVqhQaBSeBOgzNoUdQ1X5L737_eWrvtB9_OMbbnXvgX1eZVwA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tse Guan Tan ; Teo, J. ; Hui Keng Lau</creator><creatorcontrib>Tse Guan Tan ; Teo, J. ; Hui Keng Lau</creatorcontrib><description>The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.</description><identifier>ISBN: 9781424413553</identifier><identifier>ISBN: 1424413559</identifier><identifier>EISBN: 9781424413560</identifier><identifier>EISBN: 1424413567</identifier><identifier>DOI: 10.1109/ICIAS.2007.4658439</identifier><identifier>LCCN: 2007928631</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Distance measurement ; Evolutionary computation ; Genetic algorithms ; Laboratories ; Optimization ; Polynomials</subject><ispartof>2007 International Conference on Intelligent and Advanced Systems, 2007, p.501-504</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4658439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4658439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tse Guan Tan</creatorcontrib><creatorcontrib>Teo, J.</creatorcontrib><creatorcontrib>Hui Keng Lau</creatorcontrib><title>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</title><title>2007 International Conference on Intelligent and Advanced Systems</title><addtitle>ICIAS</addtitle><description>The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.</description><subject>Artificial intelligence</subject><subject>Distance measurement</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Laboratories</subject><subject>Optimization</subject><subject>Polynomials</subject><isbn>9781424413553</isbn><isbn>1424413559</isbn><isbn>9781424413560</isbn><isbn>1424413567</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1OwzAQhI1QJaDkBeCSF0hY_8X2MYoCjVTEoXCuNsEGV04TJWmlvj0ByoG9zI6-1Wo0hNxRSCkF81AVVb5JGYBKRSa14OaCREZpKpgQlMsMLv95yRfk5vvcMJ1xekWicdzBPNxIAeyabMq294NvMMS4x3Aa_Rh3Li66treTn_zRzrs9duEw-W4fPx_CrPXONj-o_AM4nOI8fHSDnz7bW7JwGEYbnXVJ3h7L12KVrF-eqiJfJ54qOSWaC4eZtsCtqjWjUjTNO9OADMScVWi0nNYNauVqhQaBSeBOgzNoUdQ1X5L737_eWrvtB9_OMbbnXvgX1eZVwA</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Tse Guan Tan</creator><creator>Teo, J.</creator><creator>Hui Keng Lau</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200711</creationdate><title>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</title><author>Tse Guan Tan ; Teo, J. ; Hui Keng Lau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-834fa68e03e7b82154ccd280a20463148ae31bca87fb7a9a02503f80f9aea4bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Distance measurement</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Laboratories</topic><topic>Optimization</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Tse Guan Tan</creatorcontrib><creatorcontrib>Teo, J.</creatorcontrib><creatorcontrib>Hui Keng Lau</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tse Guan Tan</au><au>Teo, J.</au><au>Hui Keng Lau</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm</atitle><btitle>2007 International Conference on Intelligent and Advanced Systems</btitle><stitle>ICIAS</stitle><date>2007-11</date><risdate>2007</risdate><spage>501</spage><epage>504</epage><pages>501-504</pages><isbn>9781424413553</isbn><isbn>1424413559</isbn><eisbn>9781424413560</eisbn><eisbn>1424413567</eisbn><abstract>The integration between strength Pareto Evolutionary algorithm 2 (SPEA2) and competitive coevolution (CE) concept is presented in this paper, a strategy for solving an optimization problem with three scalable objectives. The Hall of Fame (HOF) competitive fitness function is used to implement the CE. This proposed algorithm referred to as SPEA2-CE-HOF. The performance between SPEA2-CE-HOF is compared against original SPEA2 in solving problems in the DTLZ suite having three to five objectives. The results showed that the SPEA2-CE-HOF performed better than SPEA2 in most of the DTLZ test problems for the generational distance. However the proposed algorithm performed average for the coverage metric.</abstract><pub>IEEE</pub><doi>10.1109/ICIAS.2007.4658439</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424413553
ispartof 2007 International Conference on Intelligent and Advanced Systems, 2007, p.501-504
issn
language eng
recordid cdi_ieee_primary_4658439
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Distance measurement
Evolutionary computation
Genetic algorithms
Laboratories
Optimization
Polynomials
title Empirical analysis of Competitive Coevolution Multiobjective Evolutionary Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Empirical%20analysis%20of%20Competitive%20Coevolution%20Multiobjective%20Evolutionary%20Algorithm&rft.btitle=2007%20International%20Conference%20on%20Intelligent%20and%20Advanced%20Systems&rft.au=Tse%20Guan%20Tan&rft.date=2007-11&rft.spage=501&rft.epage=504&rft.pages=501-504&rft.isbn=9781424413553&rft.isbn_list=1424413559&rft_id=info:doi/10.1109/ICIAS.2007.4658439&rft.eisbn=9781424413560&rft.eisbn_list=1424413567&rft_dat=%3Cieee_6IE%3E4658439%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-834fa68e03e7b82154ccd280a20463148ae31bca87fb7a9a02503f80f9aea4bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4658439&rfr_iscdi=true