Loading…
CMP network-on-chip overlaid with multi-band RF-interconnect
In this paper, we explore the use of multi-band radio frequency interconnect (or RF-I) with signal propagation at the speed of light to provide shortcuts in a many core network-on-chip (NoC) mesh topology. We investigate the costs associated with this technology, and examine the latency and bandwidt...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we explore the use of multi-band radio frequency interconnect (or RF-I) with signal propagation at the speed of light to provide shortcuts in a many core network-on-chip (NoC) mesh topology. We investigate the costs associated with this technology, and examine the latency and bandwidth benefits that it can provide. Assuming a 400 mm 2 die, we demonstrate that in exchange for 0.13% of area overhead on the active layer, RF-I can provide an average 13% (max 18%) boost in application performance, corresponding to an average 22% (max 24%) reduction in packet latency. We observe that RF access points may become traffic bottlenecks when many packets try to use the RF at once, and conclude by proposing strategies that adapt RF-I utilization at runtime to actively combat this congestion. |
---|---|
ISSN: | 1530-0897 2378-203X |
DOI: | 10.1109/HPCA.2008.4658639 |