Loading…
Secondary Arc Formation Within a Distributed Energy Railgun
Experimental results comparing a breech-fed scheme and two distributed energy schemes for a free-running arc are presented. Analysis and observations of the issues associated with distributed energy switching of a plasma arc in the railgun are explored. The use of a free-running arc allows experimen...
Saved in:
Published in: | IEEE transactions on plasma science 2008-10, Vol.36 (5), p.2738-2746 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental results comparing a breech-fed scheme and two distributed energy schemes for a free-running arc are presented. Analysis and observations of the issues associated with distributed energy switching of a plasma arc in the railgun are explored. The use of a free-running arc allows experiments to emulate the ablation and restrike phenomenon of a plasma armature railgun at high speeds (> 5 km/s) without the requirement of a large amount of stored energy. Numerous experimental tests were conducted to investigate the dynamics of plasma arcs within a distributed energy source railgun. Variations of switch timing, bore pressure, bore material, current amplitude, and current pulse length within each stage have been tested. These data reveal important design parameters for distributed energy railguns. The arc length, stage length, and stage trigger timing play a crucial role in distributed energy railgun performance. Failure to take these parameters into consideration will result in velocity reduction through plasma arc restrike and/or splitting. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2008.2004228 |