Loading…

Real-coded genetic algorithms and nonlinear parameter identification

In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulat...

Full description

Saved in:
Bibliographic Details
Main Authors: Sorsa, A., Peltokangas, R., Leiviska, K.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723
cites
container_end_page 10-47
container_issue
container_start_page 10-42
container_title
container_volume 2
creator Sorsa, A.
Peltokangas, R.
Leiviska, K.
description In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.
doi_str_mv 10.1109/IS.2008.4670495
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4670495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670495</ieee_id><sourcerecordid>4670495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc2jEm3pmgWb_EDKjGN77CUqr0qVkHisKzceF6PUqZJs-HuC6OpK9-iexRXiBmGJCO5u_b6UAHapDIFy-kzMUEmlkBSYczFFp7BE6dSFWDiyJ1Y5vByZ_mOG5ETMRgc5MA7xSsz6_htAVoB2Kh7e2Ddl3QYOxZ4zD6kufLNvuzR8HfrC51DkNjcps--Ko-_8gQfuihQ4Dymm2g-pzddiEn3T8-KUc_H59Pixeik3r8_r1f2mrJFIlzEqrcjoylqGAJJRGyeRNQFVFgl2EF3EEMYmSlKMNu6M0-MIIpKs5uL235uYeXvs0sF3P9vTNdUvZ-tPcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-coded genetic algorithms and nonlinear parameter identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sorsa, A. ; Peltokangas, R. ; Leiviska, K.</creator><creatorcontrib>Sorsa, A. ; Peltokangas, R. ; Leiviska, K.</creatorcontrib><description>In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.</description><identifier>ISSN: 1541-1672</identifier><identifier>ISBN: 9781424417391</identifier><identifier>ISBN: 1424417392</identifier><identifier>EISSN: 1941-1294</identifier><identifier>EISBN: 1424417406</identifier><identifier>EISBN: 9781424417407</identifier><identifier>DOI: 10.1109/IS.2008.4670495</identifier><identifier>LCCN: 2007906911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Biological processes ; Biological system modeling ; Chemostat model ; Continuous-stirred tank reactor ; Couplings ; Genetic algorithms ; Genetic mutations ; Intelligent structures ; Intelligent systems ; Parameter estimation ; parameter identification</subject><ispartof>2008 4th International IEEE Conference Intelligent Systems, 2008, Vol.2, p.10-42-10-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54795,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sorsa, A.</creatorcontrib><creatorcontrib>Peltokangas, R.</creatorcontrib><creatorcontrib>Leiviska, K.</creatorcontrib><title>Real-coded genetic algorithms and nonlinear parameter identification</title><title>2008 4th International IEEE Conference Intelligent Systems</title><addtitle>IS</addtitle><description>In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.</description><subject>Biological cells</subject><subject>Biological processes</subject><subject>Biological system modeling</subject><subject>Chemostat model</subject><subject>Continuous-stirred tank reactor</subject><subject>Couplings</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Intelligent structures</subject><subject>Intelligent systems</subject><subject>Parameter estimation</subject><subject>parameter identification</subject><issn>1541-1672</issn><issn>1941-1294</issn><isbn>9781424417391</isbn><isbn>1424417392</isbn><isbn>1424417406</isbn><isbn>9781424417407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAQRc2jEm3pmgWb_EDKjGN77CUqr0qVkHisKzceF6PUqZJs-HuC6OpK9-iexRXiBmGJCO5u_b6UAHapDIFy-kzMUEmlkBSYczFFp7BE6dSFWDiyJ1Y5vByZ_mOG5ETMRgc5MA7xSsz6_htAVoB2Kh7e2Ddl3QYOxZ4zD6kufLNvuzR8HfrC51DkNjcps--Ko-_8gQfuihQ4Dymm2g-pzddiEn3T8-KUc_H59Pixeik3r8_r1f2mrJFIlzEqrcjoylqGAJJRGyeRNQFVFgl2EF3EEMYmSlKMNu6M0-MIIpKs5uL235uYeXvs0sF3P9vTNdUvZ-tPcQ</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Sorsa, A.</creator><creator>Peltokangas, R.</creator><creator>Leiviska, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Real-coded genetic algorithms and nonlinear parameter identification</title><author>Sorsa, A. ; Peltokangas, R. ; Leiviska, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological cells</topic><topic>Biological processes</topic><topic>Biological system modeling</topic><topic>Chemostat model</topic><topic>Continuous-stirred tank reactor</topic><topic>Couplings</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Intelligent structures</topic><topic>Intelligent systems</topic><topic>Parameter estimation</topic><topic>parameter identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorsa, A.</creatorcontrib><creatorcontrib>Peltokangas, R.</creatorcontrib><creatorcontrib>Leiviska, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sorsa, A.</au><au>Peltokangas, R.</au><au>Leiviska, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-coded genetic algorithms and nonlinear parameter identification</atitle><btitle>2008 4th International IEEE Conference Intelligent Systems</btitle><stitle>IS</stitle><date>2008-09</date><risdate>2008</risdate><volume>2</volume><spage>10-42</spage><epage>10-47</epage><pages>10-42-10-47</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><isbn>9781424417391</isbn><isbn>1424417392</isbn><eisbn>1424417406</eisbn><eisbn>9781424417407</eisbn><abstract>In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.</abstract><pub>IEEE</pub><doi>10.1109/IS.2008.4670495</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof 2008 4th International IEEE Conference Intelligent Systems, 2008, Vol.2, p.10-42-10-47
issn 1541-1672
1941-1294
language eng
recordid cdi_ieee_primary_4670495
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Biological processes
Biological system modeling
Chemostat model
Continuous-stirred tank reactor
Couplings
Genetic algorithms
Genetic mutations
Intelligent structures
Intelligent systems
Parameter estimation
parameter identification
title Real-coded genetic algorithms and nonlinear parameter identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-coded%20genetic%20algorithms%20and%20nonlinear%20parameter%20identification&rft.btitle=2008%204th%20International%20IEEE%20Conference%20Intelligent%20Systems&rft.au=Sorsa,%20A.&rft.date=2008-09&rft.volume=2&rft.spage=10-42&rft.epage=10-47&rft.pages=10-42-10-47&rft.issn=1541-1672&rft.eissn=1941-1294&rft.isbn=9781424417391&rft.isbn_list=1424417392&rft_id=info:doi/10.1109/IS.2008.4670495&rft.eisbn=1424417406&rft.eisbn_list=9781424417407&rft_dat=%3Cieee_6IE%3E4670495%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670495&rfr_iscdi=true