Loading…
Real-coded genetic algorithms and nonlinear parameter identification
In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulat...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723 |
---|---|
cites | |
container_end_page | 10-47 |
container_issue | |
container_start_page | 10-42 |
container_title | |
container_volume | 2 |
creator | Sorsa, A. Peltokangas, R. Leiviska, K. |
description | In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results. |
doi_str_mv | 10.1109/IS.2008.4670495 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4670495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670495</ieee_id><sourcerecordid>4670495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc2jEm3pmgWb_EDKjGN77CUqr0qVkHisKzceF6PUqZJs-HuC6OpK9-iexRXiBmGJCO5u_b6UAHapDIFy-kzMUEmlkBSYczFFp7BE6dSFWDiyJ1Y5vByZ_mOG5ETMRgc5MA7xSsz6_htAVoB2Kh7e2Ddl3QYOxZ4zD6kufLNvuzR8HfrC51DkNjcps--Ko-_8gQfuihQ4Dymm2g-pzddiEn3T8-KUc_H59Pixeik3r8_r1f2mrJFIlzEqrcjoylqGAJJRGyeRNQFVFgl2EF3EEMYmSlKMNu6M0-MIIpKs5uL235uYeXvs0sF3P9vTNdUvZ-tPcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-coded genetic algorithms and nonlinear parameter identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sorsa, A. ; Peltokangas, R. ; Leiviska, K.</creator><creatorcontrib>Sorsa, A. ; Peltokangas, R. ; Leiviska, K.</creatorcontrib><description>In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.</description><identifier>ISSN: 1541-1672</identifier><identifier>ISBN: 9781424417391</identifier><identifier>ISBN: 1424417392</identifier><identifier>EISSN: 1941-1294</identifier><identifier>EISBN: 1424417406</identifier><identifier>EISBN: 9781424417407</identifier><identifier>DOI: 10.1109/IS.2008.4670495</identifier><identifier>LCCN: 2007906911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Biological processes ; Biological system modeling ; Chemostat model ; Continuous-stirred tank reactor ; Couplings ; Genetic algorithms ; Genetic mutations ; Intelligent structures ; Intelligent systems ; Parameter estimation ; parameter identification</subject><ispartof>2008 4th International IEEE Conference Intelligent Systems, 2008, Vol.2, p.10-42-10-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54795,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sorsa, A.</creatorcontrib><creatorcontrib>Peltokangas, R.</creatorcontrib><creatorcontrib>Leiviska, K.</creatorcontrib><title>Real-coded genetic algorithms and nonlinear parameter identification</title><title>2008 4th International IEEE Conference Intelligent Systems</title><addtitle>IS</addtitle><description>In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.</description><subject>Biological cells</subject><subject>Biological processes</subject><subject>Biological system modeling</subject><subject>Chemostat model</subject><subject>Continuous-stirred tank reactor</subject><subject>Couplings</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Intelligent structures</subject><subject>Intelligent systems</subject><subject>Parameter estimation</subject><subject>parameter identification</subject><issn>1541-1672</issn><issn>1941-1294</issn><isbn>9781424417391</isbn><isbn>1424417392</isbn><isbn>1424417406</isbn><isbn>9781424417407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAQRc2jEm3pmgWb_EDKjGN77CUqr0qVkHisKzceF6PUqZJs-HuC6OpK9-iexRXiBmGJCO5u_b6UAHapDIFy-kzMUEmlkBSYczFFp7BE6dSFWDiyJ1Y5vByZ_mOG5ETMRgc5MA7xSsz6_htAVoB2Kh7e2Ddl3QYOxZ4zD6kufLNvuzR8HfrC51DkNjcps--Ko-_8gQfuihQ4Dymm2g-pzddiEn3T8-KUc_H59Pixeik3r8_r1f2mrJFIlzEqrcjoylqGAJJRGyeRNQFVFgl2EF3EEMYmSlKMNu6M0-MIIpKs5uL235uYeXvs0sF3P9vTNdUvZ-tPcQ</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Sorsa, A.</creator><creator>Peltokangas, R.</creator><creator>Leiviska, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Real-coded genetic algorithms and nonlinear parameter identification</title><author>Sorsa, A. ; Peltokangas, R. ; Leiviska, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological cells</topic><topic>Biological processes</topic><topic>Biological system modeling</topic><topic>Chemostat model</topic><topic>Continuous-stirred tank reactor</topic><topic>Couplings</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Intelligent structures</topic><topic>Intelligent systems</topic><topic>Parameter estimation</topic><topic>parameter identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorsa, A.</creatorcontrib><creatorcontrib>Peltokangas, R.</creatorcontrib><creatorcontrib>Leiviska, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sorsa, A.</au><au>Peltokangas, R.</au><au>Leiviska, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-coded genetic algorithms and nonlinear parameter identification</atitle><btitle>2008 4th International IEEE Conference Intelligent Systems</btitle><stitle>IS</stitle><date>2008-09</date><risdate>2008</risdate><volume>2</volume><spage>10-42</spage><epage>10-47</epage><pages>10-42-10-47</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><isbn>9781424417391</isbn><isbn>1424417392</isbn><eisbn>1424417406</eisbn><eisbn>9781424417407</eisbn><abstract>In this study, real-coded genetic algorithms are used in the parameter identification of the macroscopic Chemostat model. The Chemostat model utilized in this work is nonlinear having two distinct operating areas. Thus, the model is identified separately for both operating areas. The process simulator is used to generate data for the parameter identification. The optimizations with genetic algorithms are repeated with 200 different initial populations to guarantee the validity of the results. The parameter identification with genetic algorithms performs well giving accurate results.</abstract><pub>IEEE</pub><doi>10.1109/IS.2008.4670495</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | 2008 4th International IEEE Conference Intelligent Systems, 2008, Vol.2, p.10-42-10-47 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_ieee_primary_4670495 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Biological processes Biological system modeling Chemostat model Continuous-stirred tank reactor Couplings Genetic algorithms Genetic mutations Intelligent structures Intelligent systems Parameter estimation parameter identification |
title | Real-coded genetic algorithms and nonlinear parameter identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-coded%20genetic%20algorithms%20and%20nonlinear%20parameter%20identification&rft.btitle=2008%204th%20International%20IEEE%20Conference%20Intelligent%20Systems&rft.au=Sorsa,%20A.&rft.date=2008-09&rft.volume=2&rft.spage=10-42&rft.epage=10-47&rft.pages=10-42-10-47&rft.issn=1541-1672&rft.eissn=1941-1294&rft.isbn=9781424417391&rft.isbn_list=1424417392&rft_id=info:doi/10.1109/IS.2008.4670495&rft.eisbn=1424417406&rft.eisbn_list=9781424417407&rft_dat=%3Cieee_6IE%3E4670495%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1775-ff454765388e0d02e156921e570738170b0f9f1dde57f274e18fb6955470f1723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670495&rfr_iscdi=true |