Loading…

Research on the recognition of surface defects in copper strip based on fuzzy neural network

The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper present...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Xue-wu, Lv, Yan-yun, Ding, Yan-qiong, Zhou, Zhen-tao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1154
container_issue
container_start_page 1151
container_title
container_volume
creator Zhang, Xue-wu
Lv, Yan-yun
Ding, Yan-qiong
Zhou, Zhen-tao
description The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.
doi_str_mv 10.1109/ICCIS.2008.4670927
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4670927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670927</ieee_id><sourcerecordid>4670927</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bdd311427bad696c72d44275ecb97e00f1edefbe8013e7fdb80f1cffa9ea1ab33</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhSNasK39A_qSP7A1t91sHmXxslAQtI9CyWVio3V3SbZI--uNWHBeDt-BM3MYhK4pWVJK1G3bNO3rkhFSL0UliWLyDM2oYELQSgpx_g-8ukBTxllV1JTxCZrlkFS8rGt6iRYpfZA8osxGOUVvL5BAR7vFfYfHLeAItn_vwhgy9x6nffTaAnbgwY4Jhw7bfhgg4jTGMGCjE7jfrN8fjwfcwT7qXZbxu4-fV2ji9S7B4qRztH64XzdPxer5sW3uVkVQZCyMc5zm8tJoV6nKSuZEphKsURII8RTydQM1oRykd6bOlvVeK9BUG87n6OZvbQCAzRDDl46HzelL_AdzHlnD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on the recognition of surface defects in copper strip based on fuzzy neural network</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Xue-wu ; Lv, Yan-yun ; Ding, Yan-qiong ; Zhou, Zhen-tao</creator><creatorcontrib>Zhang, Xue-wu ; Lv, Yan-yun ; Ding, Yan-qiong ; Zhou, Zhen-tao</creatorcontrib><description>The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.</description><identifier>ISSN: 2326-8123</identifier><identifier>ISBN: 1424416736</identifier><identifier>ISBN: 9781424416738</identifier><identifier>EISBN: 1424416744</identifier><identifier>EISBN: 9781424416745</identifier><identifier>DOI: 10.1109/ICCIS.2008.4670927</identifier><identifier>LCCN: 2007935881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication industry ; Construction industry ; Copper ; Copper strips ; Electronics industry ; Feature extraction ; Fuzzy neural network ; Fuzzy neural networks ; Identification ; Inspection ; Moment invariant ; Neural networks ; Shipbuilding industry ; Strips</subject><ispartof>2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, p.1151-1154</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xue-wu</creatorcontrib><creatorcontrib>Lv, Yan-yun</creatorcontrib><creatorcontrib>Ding, Yan-qiong</creatorcontrib><creatorcontrib>Zhou, Zhen-tao</creatorcontrib><title>Research on the recognition of surface defects in copper strip based on fuzzy neural network</title><title>2008 IEEE Conference on Cybernetics and Intelligent Systems</title><addtitle>ICCIS</addtitle><description>The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.</description><subject>Communication industry</subject><subject>Construction industry</subject><subject>Copper</subject><subject>Copper strips</subject><subject>Electronics industry</subject><subject>Feature extraction</subject><subject>Fuzzy neural network</subject><subject>Fuzzy neural networks</subject><subject>Identification</subject><subject>Inspection</subject><subject>Moment invariant</subject><subject>Neural networks</subject><subject>Shipbuilding industry</subject><subject>Strips</subject><issn>2326-8123</issn><isbn>1424416736</isbn><isbn>9781424416738</isbn><isbn>1424416744</isbn><isbn>9781424416745</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkFtLAzEQhSNasK39A_qSP7A1t91sHmXxslAQtI9CyWVio3V3SbZI--uNWHBeDt-BM3MYhK4pWVJK1G3bNO3rkhFSL0UliWLyDM2oYELQSgpx_g-8ukBTxllV1JTxCZrlkFS8rGt6iRYpfZA8osxGOUVvL5BAR7vFfYfHLeAItn_vwhgy9x6nffTaAnbgwY4Jhw7bfhgg4jTGMGCjE7jfrN8fjwfcwT7qXZbxu4-fV2ji9S7B4qRztH64XzdPxer5sW3uVkVQZCyMc5zm8tJoV6nKSuZEphKsURII8RTydQM1oRykd6bOlvVeK9BUG87n6OZvbQCAzRDDl46HzelL_AdzHlnD</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Zhang, Xue-wu</creator><creator>Lv, Yan-yun</creator><creator>Ding, Yan-qiong</creator><creator>Zhou, Zhen-tao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Research on the recognition of surface defects in copper strip based on fuzzy neural network</title><author>Zhang, Xue-wu ; Lv, Yan-yun ; Ding, Yan-qiong ; Zhou, Zhen-tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bdd311427bad696c72d44275ecb97e00f1edefbe8013e7fdb80f1cffa9ea1ab33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Communication industry</topic><topic>Construction industry</topic><topic>Copper</topic><topic>Copper strips</topic><topic>Electronics industry</topic><topic>Feature extraction</topic><topic>Fuzzy neural network</topic><topic>Fuzzy neural networks</topic><topic>Identification</topic><topic>Inspection</topic><topic>Moment invariant</topic><topic>Neural networks</topic><topic>Shipbuilding industry</topic><topic>Strips</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xue-wu</creatorcontrib><creatorcontrib>Lv, Yan-yun</creatorcontrib><creatorcontrib>Ding, Yan-qiong</creatorcontrib><creatorcontrib>Zhou, Zhen-tao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xue-wu</au><au>Lv, Yan-yun</au><au>Ding, Yan-qiong</au><au>Zhou, Zhen-tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on the recognition of surface defects in copper strip based on fuzzy neural network</atitle><btitle>2008 IEEE Conference on Cybernetics and Intelligent Systems</btitle><stitle>ICCIS</stitle><date>2008-09</date><risdate>2008</risdate><spage>1151</spage><epage>1154</epage><pages>1151-1154</pages><issn>2326-8123</issn><isbn>1424416736</isbn><isbn>9781424416738</isbn><eisbn>1424416744</eisbn><eisbn>9781424416745</eisbn><abstract>The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2008.4670927</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2326-8123
ispartof 2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, p.1151-1154
issn 2326-8123
language eng
recordid cdi_ieee_primary_4670927
source IEEE Xplore All Conference Series
subjects Communication industry
Construction industry
Copper
Copper strips
Electronics industry
Feature extraction
Fuzzy neural network
Fuzzy neural networks
Identification
Inspection
Moment invariant
Neural networks
Shipbuilding industry
Strips
title Research on the recognition of surface defects in copper strip based on fuzzy neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20the%20recognition%20of%20surface%20defects%20in%20copper%20strip%20based%20on%20fuzzy%20neural%20network&rft.btitle=2008%20IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems&rft.au=Zhang,%20Xue-wu&rft.date=2008-09&rft.spage=1151&rft.epage=1154&rft.pages=1151-1154&rft.issn=2326-8123&rft.isbn=1424416736&rft.isbn_list=9781424416738&rft_id=info:doi/10.1109/ICCIS.2008.4670927&rft.eisbn=1424416744&rft.eisbn_list=9781424416745&rft_dat=%3Cieee_CHZPO%3E4670927%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bdd311427bad696c72d44275ecb97e00f1edefbe8013e7fdb80f1cffa9ea1ab33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670927&rfr_iscdi=true