Loading…
Research on the recognition of surface defects in copper strip based on fuzzy neural network
The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper present...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1154 |
container_issue | |
container_start_page | 1151 |
container_title | |
container_volume | |
creator | Zhang, Xue-wu Lv, Yan-yun Ding, Yan-qiong Zhou, Zhen-tao |
description | The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed. |
doi_str_mv | 10.1109/ICCIS.2008.4670927 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4670927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4670927</ieee_id><sourcerecordid>4670927</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bdd311427bad696c72d44275ecb97e00f1edefbe8013e7fdb80f1cffa9ea1ab33</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhSNasK39A_qSP7A1t91sHmXxslAQtI9CyWVio3V3SbZI--uNWHBeDt-BM3MYhK4pWVJK1G3bNO3rkhFSL0UliWLyDM2oYELQSgpx_g-8ukBTxllV1JTxCZrlkFS8rGt6iRYpfZA8osxGOUVvL5BAR7vFfYfHLeAItn_vwhgy9x6nffTaAnbgwY4Jhw7bfhgg4jTGMGCjE7jfrN8fjwfcwT7qXZbxu4-fV2ji9S7B4qRztH64XzdPxer5sW3uVkVQZCyMc5zm8tJoV6nKSuZEphKsURII8RTydQM1oRykd6bOlvVeK9BUG87n6OZvbQCAzRDDl46HzelL_AdzHlnD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on the recognition of surface defects in copper strip based on fuzzy neural network</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Xue-wu ; Lv, Yan-yun ; Ding, Yan-qiong ; Zhou, Zhen-tao</creator><creatorcontrib>Zhang, Xue-wu ; Lv, Yan-yun ; Ding, Yan-qiong ; Zhou, Zhen-tao</creatorcontrib><description>The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.</description><identifier>ISSN: 2326-8123</identifier><identifier>ISBN: 1424416736</identifier><identifier>ISBN: 9781424416738</identifier><identifier>EISBN: 1424416744</identifier><identifier>EISBN: 9781424416745</identifier><identifier>DOI: 10.1109/ICCIS.2008.4670927</identifier><identifier>LCCN: 2007935881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication industry ; Construction industry ; Copper ; Copper strips ; Electronics industry ; Feature extraction ; Fuzzy neural network ; Fuzzy neural networks ; Identification ; Inspection ; Moment invariant ; Neural networks ; Shipbuilding industry ; Strips</subject><ispartof>2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, p.1151-1154</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4670927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4670927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xue-wu</creatorcontrib><creatorcontrib>Lv, Yan-yun</creatorcontrib><creatorcontrib>Ding, Yan-qiong</creatorcontrib><creatorcontrib>Zhou, Zhen-tao</creatorcontrib><title>Research on the recognition of surface defects in copper strip based on fuzzy neural network</title><title>2008 IEEE Conference on Cybernetics and Intelligent Systems</title><addtitle>ICCIS</addtitle><description>The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.</description><subject>Communication industry</subject><subject>Construction industry</subject><subject>Copper</subject><subject>Copper strips</subject><subject>Electronics industry</subject><subject>Feature extraction</subject><subject>Fuzzy neural network</subject><subject>Fuzzy neural networks</subject><subject>Identification</subject><subject>Inspection</subject><subject>Moment invariant</subject><subject>Neural networks</subject><subject>Shipbuilding industry</subject><subject>Strips</subject><issn>2326-8123</issn><isbn>1424416736</isbn><isbn>9781424416738</isbn><isbn>1424416744</isbn><isbn>9781424416745</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkFtLAzEQhSNasK39A_qSP7A1t91sHmXxslAQtI9CyWVio3V3SbZI--uNWHBeDt-BM3MYhK4pWVJK1G3bNO3rkhFSL0UliWLyDM2oYELQSgpx_g-8ukBTxllV1JTxCZrlkFS8rGt6iRYpfZA8osxGOUVvL5BAR7vFfYfHLeAItn_vwhgy9x6nffTaAnbgwY4Jhw7bfhgg4jTGMGCjE7jfrN8fjwfcwT7qXZbxu4-fV2ji9S7B4qRztH64XzdPxer5sW3uVkVQZCyMc5zm8tJoV6nKSuZEphKsURII8RTydQM1oRykd6bOlvVeK9BUG87n6OZvbQCAzRDDl46HzelL_AdzHlnD</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Zhang, Xue-wu</creator><creator>Lv, Yan-yun</creator><creator>Ding, Yan-qiong</creator><creator>Zhou, Zhen-tao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Research on the recognition of surface defects in copper strip based on fuzzy neural network</title><author>Zhang, Xue-wu ; Lv, Yan-yun ; Ding, Yan-qiong ; Zhou, Zhen-tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bdd311427bad696c72d44275ecb97e00f1edefbe8013e7fdb80f1cffa9ea1ab33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Communication industry</topic><topic>Construction industry</topic><topic>Copper</topic><topic>Copper strips</topic><topic>Electronics industry</topic><topic>Feature extraction</topic><topic>Fuzzy neural network</topic><topic>Fuzzy neural networks</topic><topic>Identification</topic><topic>Inspection</topic><topic>Moment invariant</topic><topic>Neural networks</topic><topic>Shipbuilding industry</topic><topic>Strips</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xue-wu</creatorcontrib><creatorcontrib>Lv, Yan-yun</creatorcontrib><creatorcontrib>Ding, Yan-qiong</creatorcontrib><creatorcontrib>Zhou, Zhen-tao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xue-wu</au><au>Lv, Yan-yun</au><au>Ding, Yan-qiong</au><au>Zhou, Zhen-tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on the recognition of surface defects in copper strip based on fuzzy neural network</atitle><btitle>2008 IEEE Conference on Cybernetics and Intelligent Systems</btitle><stitle>ICCIS</stitle><date>2008-09</date><risdate>2008</risdate><spage>1151</spage><epage>1154</epage><pages>1151-1154</pages><issn>2326-8123</issn><isbn>1424416736</isbn><isbn>9781424416738</isbn><eisbn>1424416744</eisbn><eisbn>9781424416745</eisbn><abstract>The quality of copper strips directly affects the performance and quality of copper and its products. So there is great significance to detect and recognize the surface defects in copper strips. The testing results from traditional manual inspection methods are unsatisfactory. So, this paper presents a novel recognition method of surface defects in copper strip based on fuzzy neural network. In this paper, the feature vectors of typical defects picked by the moment invariants form the neural network training samples and fuzzy wavelet neural network based on learning rate dynamically regulated BP algorithm identifies defects. Experiments show that this method can effectively detect surface defects in copper strips in the production line. Besides, it has a high recognition accuracy and speed.</abstract><pub>IEEE</pub><doi>10.1109/ICCIS.2008.4670927</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2326-8123 |
ispartof | 2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, p.1151-1154 |
issn | 2326-8123 |
language | eng |
recordid | cdi_ieee_primary_4670927 |
source | IEEE Xplore All Conference Series |
subjects | Communication industry Construction industry Copper Copper strips Electronics industry Feature extraction Fuzzy neural network Fuzzy neural networks Identification Inspection Moment invariant Neural networks Shipbuilding industry Strips |
title | Research on the recognition of surface defects in copper strip based on fuzzy neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20the%20recognition%20of%20surface%20defects%20in%20copper%20strip%20based%20on%20fuzzy%20neural%20network&rft.btitle=2008%20IEEE%20Conference%20on%20Cybernetics%20and%20Intelligent%20Systems&rft.au=Zhang,%20Xue-wu&rft.date=2008-09&rft.spage=1151&rft.epage=1154&rft.pages=1151-1154&rft.issn=2326-8123&rft.isbn=1424416736&rft.isbn_list=9781424416738&rft_id=info:doi/10.1109/ICCIS.2008.4670927&rft.eisbn=1424416744&rft.eisbn_list=9781424416745&rft_dat=%3Cieee_CHZPO%3E4670927%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bdd311427bad696c72d44275ecb97e00f1edefbe8013e7fdb80f1cffa9ea1ab33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4670927&rfr_iscdi=true |