Loading…

Bargaining and Multi-User Detection in MIMO Interference Networks

We investigate the use of multi-user detection to improve performance in MIMO interference networks. Unfortunately, while multi-user detection often allows higher data rates, it greatly complicates the problem: in addition to choosing a transmit covariance for each transmitter, we must decide which...

Full description

Saved in:
Bibliographic Details
Main Authors: Nokleby, M., Swindlehurst, A.L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Nokleby, M.
Swindlehurst, A.L.
description We investigate the use of multi-user detection to improve performance in MIMO interference networks. Unfortunately, while multi-user detection often allows higher data rates, it greatly complicates the problem: in addition to choosing a transmit covariance for each transmitter, we must decide which signals each receiver will detect and which data rates make such detection feasible. We discuss methods to optimize the data rates in two ways: maximizing the sum throughput of the network, and choosing rates based on the Kalai-Smorodinsky bargaining solution from cooperative game theory. Simulation results suggest that, while sum-rate maximization yields higher average throughput, the Kalai-Smorodinsky solution provides a superior solution in terms of fairness. The simulations also suggest that multi-user detection significantly improves network performance.
doi_str_mv 10.1109/ICCCN.2008.ECP.103
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4674263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4674263</ieee_id><sourcerecordid>4674263</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4faf8d2524980ea5bd511437d9b6e570f48c044b0944dfb97be515f3785b18d73</originalsourceid><addsrcrecordid>eNotj81OAjEURutfIiIvoJu-wIy37S1tlzigTsKPC1mTDnNLqlhMZ4zx7SWRb3MWJznJx9idgFIIcA91VVXLUgLYcla9lgLUGRs5YwVKRKkcqHM2kGNlCocKLtjNSVjnLtngWNCFBK2v2ajr3uE4LY00OGCTR593PqaYdtynli--930s1h1lPqWetn08JB4TX9SLFa9TTzlQprQlvqT-55A_ult2Ffy-o9GJQ7Z-mr1VL8V89VxXk3kRhdF9gcEH20ot0Vkgr5tWC4HKtK4ZkzYQ0G4BsQGH2IbGmYa00EEZqxthW6OG7P6_G4lo85Xjp8-_GxwbPP5Wfz_1Tc0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bargaining and Multi-User Detection in MIMO Interference Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nokleby, M. ; Swindlehurst, A.L.</creator><creatorcontrib>Nokleby, M. ; Swindlehurst, A.L.</creatorcontrib><description>We investigate the use of multi-user detection to improve performance in MIMO interference networks. Unfortunately, while multi-user detection often allows higher data rates, it greatly complicates the problem: in addition to choosing a transmit covariance for each transmitter, we must decide which signals each receiver will detect and which data rates make such detection feasible. We discuss methods to optimize the data rates in two ways: maximizing the sum throughput of the network, and choosing rates based on the Kalai-Smorodinsky bargaining solution from cooperative game theory. Simulation results suggest that, while sum-rate maximization yields higher average throughput, the Kalai-Smorodinsky solution provides a superior solution in terms of fairness. The simulations also suggest that multi-user detection significantly improves network performance.</description><identifier>ISSN: 1095-2055</identifier><identifier>ISBN: 1424423899</identifier><identifier>ISBN: 9781424423897</identifier><identifier>EISSN: 2637-9430</identifier><identifier>EISBN: 9781424423903</identifier><identifier>EISBN: 1424423902</identifier><identifier>DOI: 10.1109/ICCCN.2008.ECP.103</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Covariance matrix ; Decoding ; Game theory ; Interference ; MIMO ; Multiuser detection ; Signal detection ; Throughput ; Transmitters</subject><ispartof>2008 Proceedings of 17th International Conference on Computer Communications and Networks, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4674263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2053,27907,54537,54902,54914</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4674263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nokleby, M.</creatorcontrib><creatorcontrib>Swindlehurst, A.L.</creatorcontrib><title>Bargaining and Multi-User Detection in MIMO Interference Networks</title><title>2008 Proceedings of 17th International Conference on Computer Communications and Networks</title><addtitle>ICCCN</addtitle><description>We investigate the use of multi-user detection to improve performance in MIMO interference networks. Unfortunately, while multi-user detection often allows higher data rates, it greatly complicates the problem: in addition to choosing a transmit covariance for each transmitter, we must decide which signals each receiver will detect and which data rates make such detection feasible. We discuss methods to optimize the data rates in two ways: maximizing the sum throughput of the network, and choosing rates based on the Kalai-Smorodinsky bargaining solution from cooperative game theory. Simulation results suggest that, while sum-rate maximization yields higher average throughput, the Kalai-Smorodinsky solution provides a superior solution in terms of fairness. The simulations also suggest that multi-user detection significantly improves network performance.</description><subject>Computer networks</subject><subject>Covariance matrix</subject><subject>Decoding</subject><subject>Game theory</subject><subject>Interference</subject><subject>MIMO</subject><subject>Multiuser detection</subject><subject>Signal detection</subject><subject>Throughput</subject><subject>Transmitters</subject><issn>1095-2055</issn><issn>2637-9430</issn><isbn>1424423899</isbn><isbn>9781424423897</isbn><isbn>9781424423903</isbn><isbn>1424423902</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81OAjEURutfIiIvoJu-wIy37S1tlzigTsKPC1mTDnNLqlhMZ4zx7SWRb3MWJznJx9idgFIIcA91VVXLUgLYcla9lgLUGRs5YwVKRKkcqHM2kGNlCocKLtjNSVjnLtngWNCFBK2v2ajr3uE4LY00OGCTR593PqaYdtynli--930s1h1lPqWetn08JB4TX9SLFa9TTzlQprQlvqT-55A_ult2Ffy-o9GJQ7Z-mr1VL8V89VxXk3kRhdF9gcEH20ot0Vkgr5tWC4HKtK4ZkzYQ0G4BsQGH2IbGmYa00EEZqxthW6OG7P6_G4lo85Xjp8-_GxwbPP5Wfz_1Tc0</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Nokleby, M.</creator><creator>Swindlehurst, A.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Bargaining and Multi-User Detection in MIMO Interference Networks</title><author>Nokleby, M. ; Swindlehurst, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4faf8d2524980ea5bd511437d9b6e570f48c044b0944dfb97be515f3785b18d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer networks</topic><topic>Covariance matrix</topic><topic>Decoding</topic><topic>Game theory</topic><topic>Interference</topic><topic>MIMO</topic><topic>Multiuser detection</topic><topic>Signal detection</topic><topic>Throughput</topic><topic>Transmitters</topic><toplevel>online_resources</toplevel><creatorcontrib>Nokleby, M.</creatorcontrib><creatorcontrib>Swindlehurst, A.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nokleby, M.</au><au>Swindlehurst, A.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bargaining and Multi-User Detection in MIMO Interference Networks</atitle><btitle>2008 Proceedings of 17th International Conference on Computer Communications and Networks</btitle><stitle>ICCCN</stitle><date>2008-08</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1095-2055</issn><eissn>2637-9430</eissn><isbn>1424423899</isbn><isbn>9781424423897</isbn><eisbn>9781424423903</eisbn><eisbn>1424423902</eisbn><abstract>We investigate the use of multi-user detection to improve performance in MIMO interference networks. Unfortunately, while multi-user detection often allows higher data rates, it greatly complicates the problem: in addition to choosing a transmit covariance for each transmitter, we must decide which signals each receiver will detect and which data rates make such detection feasible. We discuss methods to optimize the data rates in two ways: maximizing the sum throughput of the network, and choosing rates based on the Kalai-Smorodinsky bargaining solution from cooperative game theory. Simulation results suggest that, while sum-rate maximization yields higher average throughput, the Kalai-Smorodinsky solution provides a superior solution in terms of fairness. The simulations also suggest that multi-user detection significantly improves network performance.</abstract><pub>IEEE</pub><doi>10.1109/ICCCN.2008.ECP.103</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-2055
ispartof 2008 Proceedings of 17th International Conference on Computer Communications and Networks, 2008, p.1-6
issn 1095-2055
2637-9430
language eng
recordid cdi_ieee_primary_4674263
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer networks
Covariance matrix
Decoding
Game theory
Interference
MIMO
Multiuser detection
Signal detection
Throughput
Transmitters
title Bargaining and Multi-User Detection in MIMO Interference Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bargaining%20and%20Multi-User%20Detection%20in%20MIMO%20Interference%20Networks&rft.btitle=2008%20Proceedings%20of%2017th%20International%20Conference%20on%20Computer%20Communications%20and%20Networks&rft.au=Nokleby,%20M.&rft.date=2008-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1095-2055&rft.eissn=2637-9430&rft.isbn=1424423899&rft.isbn_list=9781424423897&rft_id=info:doi/10.1109/ICCCN.2008.ECP.103&rft.eisbn=9781424423903&rft.eisbn_list=1424423902&rft_dat=%3Cieee_6IE%3E4674263%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4faf8d2524980ea5bd511437d9b6e570f48c044b0944dfb97be515f3785b18d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4674263&rfr_iscdi=true