Loading…
Challenges in integrating distributed Energy storage systems into future smart grid
Distributed energy storage systems in combination with advanced power electronics have a great technical role to play and will have a huge impact on future electrical supply systems and lead to many financial benefits. So far, when Energy storage systems (ESSs) are integrated into conventional elect...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributed energy storage systems in combination with advanced power electronics have a great technical role to play and will have a huge impact on future electrical supply systems and lead to many financial benefits. So far, when Energy storage systems (ESSs) are integrated into conventional electric grids, special designed topologies and/or control for almost each particular case is required. This means costly design and debugging time of each individual component/control system every time the utility decides to add an energy storage system. However, our present and future power network situation requires extra flexibility in the integration more than ever. Mainly for small and medium storage systems in both (customers and suppliers) side as the storage moves from central generation to distributed one (including intelligent control and advanced power electronics conversion systems). Nevertheless, storage devices, standardized architectures and techniques for distributed intelligence and smart power systems as well as planning tools and models to aid the integration of energy storage systems are still lagging behind. |
---|---|
ISSN: | 2163-5137 |
DOI: | 10.1109/ISIE.2008.4676896 |