Loading…

Image segmentation method based on self-organizing maps and K-means algorithm

In this paper, a method for color image segmentation based on Kohonenpsilas neural networks and clusterization by using modification of k-means algorithm, is presented. The method consists of three steps. First step includes usage of self-organizing maps for determination of potential candidates for...

Full description

Saved in:
Bibliographic Details
Main Authors: Ristic, D.M., Pavlovic, M., Reljin, I.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c140t-3a5a4ed00070af7b96f9f3d194901e289aa1eaa8f1844ec0a373e0cde9e19acd3
cites
container_end_page 30
container_issue
container_start_page 27
container_title
container_volume
creator Ristic, D.M.
Pavlovic, M.
Reljin, I.
description In this paper, a method for color image segmentation based on Kohonenpsilas neural networks and clusterization by using modification of k-means algorithm, is presented. The method consists of three steps. First step includes usage of self-organizing maps for determination of potential candidates for regions centers. Secondly, using maxmin algorithm, number of candidates is reduced to initializing number of centers, which are then used for further analysis. During this process, initial number of regions is formed. For every formed region spatial and intensity centers are determined. Finally, in the third step, iterative procedure of modified k-means algorithm is realized during which the number of regions is minimized. The experimental results verify the usability of described algorithm.
doi_str_mv 10.1109/NEUREL.2008.4685551
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4685551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685551</ieee_id><sourcerecordid>4685551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-3a5a4ed00070af7b96f9f3d194901e289aa1eaa8f1844ec0a373e0cde9e19acd3</originalsourceid><addsrcrecordid>eNpFUFFLwzAYjMhAN_cL9pI_0Jk0SZs8yqg6rAriwLfxrfnSRZp0NH3RX2_Fgfdyd3AcxxGy4mzNOTO3L9XurarXOWN6LQutlOIXZM5lLmVumNSX_0Z8zMj8N2iE0opfkWVKn2yCVKLQ-TV53gZokSZsA8YRRt9HGnA89pYeIKGlk0_YuawfWoj-28eWBjglCtHSpywgxEl3bT_48RhuyMxBl3B55gXZ3Vfvm8esfn3Ybu7qrOGSjZkABRLtNKNk4MqDKZxxwnIjDeOYawPAEUA7rqXEhoEoBbLGokFuoLFiQVZ_vR4R96fBBxi-9ucvxA_m0VHn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image segmentation method based on self-organizing maps and K-means algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ristic, D.M. ; Pavlovic, M. ; Reljin, I.</creator><creatorcontrib>Ristic, D.M. ; Pavlovic, M. ; Reljin, I.</creatorcontrib><description>In this paper, a method for color image segmentation based on Kohonenpsilas neural networks and clusterization by using modification of k-means algorithm, is presented. The method consists of three steps. First step includes usage of self-organizing maps for determination of potential candidates for regions centers. Secondly, using maxmin algorithm, number of candidates is reduced to initializing number of centers, which are then used for further analysis. During this process, initial number of regions is formed. For every formed region spatial and intensity centers are determined. Finally, in the third step, iterative procedure of modified k-means algorithm is realized during which the number of regions is minimized. The experimental results verify the usability of described algorithm.</description><identifier>ISBN: 142442903X</identifier><identifier>ISBN: 9781424429035</identifier><identifier>EISBN: 1424429048</identifier><identifier>EISBN: 9781424429042</identifier><identifier>DOI: 10.1109/NEUREL.2008.4685551</identifier><identifier>LCCN: 2008935851</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Color ; Color image segmentation ; Data mining ; Image segmentation ; Information retrieval ; Iterative algorithms ; K-means algorithm ; Kohonen neural network ; Neural networks ; Pixel ; Self organizing feature maps ; self-organizing map</subject><ispartof>2008 9th Symposium on Neural Network Applications in Electrical Engineering, 2008, p.27-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-3a5a4ed00070af7b96f9f3d194901e289aa1eaa8f1844ec0a373e0cde9e19acd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ristic, D.M.</creatorcontrib><creatorcontrib>Pavlovic, M.</creatorcontrib><creatorcontrib>Reljin, I.</creatorcontrib><title>Image segmentation method based on self-organizing maps and K-means algorithm</title><title>2008 9th Symposium on Neural Network Applications in Electrical Engineering</title><addtitle>NEUREL</addtitle><description>In this paper, a method for color image segmentation based on Kohonenpsilas neural networks and clusterization by using modification of k-means algorithm, is presented. The method consists of three steps. First step includes usage of self-organizing maps for determination of potential candidates for regions centers. Secondly, using maxmin algorithm, number of candidates is reduced to initializing number of centers, which are then used for further analysis. During this process, initial number of regions is formed. For every formed region spatial and intensity centers are determined. Finally, in the third step, iterative procedure of modified k-means algorithm is realized during which the number of regions is minimized. The experimental results verify the usability of described algorithm.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Color</subject><subject>Color image segmentation</subject><subject>Data mining</subject><subject>Image segmentation</subject><subject>Information retrieval</subject><subject>Iterative algorithms</subject><subject>K-means algorithm</subject><subject>Kohonen neural network</subject><subject>Neural networks</subject><subject>Pixel</subject><subject>Self organizing feature maps</subject><subject>self-organizing map</subject><isbn>142442903X</isbn><isbn>9781424429035</isbn><isbn>1424429048</isbn><isbn>9781424429042</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUFFLwzAYjMhAN_cL9pI_0Jk0SZs8yqg6rAriwLfxrfnSRZp0NH3RX2_Fgfdyd3AcxxGy4mzNOTO3L9XurarXOWN6LQutlOIXZM5lLmVumNSX_0Z8zMj8N2iE0opfkWVKn2yCVKLQ-TV53gZokSZsA8YRRt9HGnA89pYeIKGlk0_YuawfWoj-28eWBjglCtHSpywgxEl3bT_48RhuyMxBl3B55gXZ3Vfvm8esfn3Ybu7qrOGSjZkABRLtNKNk4MqDKZxxwnIjDeOYawPAEUA7rqXEhoEoBbLGokFuoLFiQVZ_vR4R96fBBxi-9ucvxA_m0VHn</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Ristic, D.M.</creator><creator>Pavlovic, M.</creator><creator>Reljin, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Image segmentation method based on self-organizing maps and K-means algorithm</title><author>Ristic, D.M. ; Pavlovic, M. ; Reljin, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-3a5a4ed00070af7b96f9f3d194901e289aa1eaa8f1844ec0a373e0cde9e19acd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Color</topic><topic>Color image segmentation</topic><topic>Data mining</topic><topic>Image segmentation</topic><topic>Information retrieval</topic><topic>Iterative algorithms</topic><topic>K-means algorithm</topic><topic>Kohonen neural network</topic><topic>Neural networks</topic><topic>Pixel</topic><topic>Self organizing feature maps</topic><topic>self-organizing map</topic><toplevel>online_resources</toplevel><creatorcontrib>Ristic, D.M.</creatorcontrib><creatorcontrib>Pavlovic, M.</creatorcontrib><creatorcontrib>Reljin, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ristic, D.M.</au><au>Pavlovic, M.</au><au>Reljin, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image segmentation method based on self-organizing maps and K-means algorithm</atitle><btitle>2008 9th Symposium on Neural Network Applications in Electrical Engineering</btitle><stitle>NEUREL</stitle><date>2008-09</date><risdate>2008</risdate><spage>27</spage><epage>30</epage><pages>27-30</pages><isbn>142442903X</isbn><isbn>9781424429035</isbn><eisbn>1424429048</eisbn><eisbn>9781424429042</eisbn><abstract>In this paper, a method for color image segmentation based on Kohonenpsilas neural networks and clusterization by using modification of k-means algorithm, is presented. The method consists of three steps. First step includes usage of self-organizing maps for determination of potential candidates for regions centers. Secondly, using maxmin algorithm, number of candidates is reduced to initializing number of centers, which are then used for further analysis. During this process, initial number of regions is formed. For every formed region spatial and intensity centers are determined. Finally, in the third step, iterative procedure of modified k-means algorithm is realized during which the number of regions is minimized. The experimental results verify the usability of described algorithm.</abstract><pub>IEEE</pub><doi>10.1109/NEUREL.2008.4685551</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142442903X
ispartof 2008 9th Symposium on Neural Network Applications in Electrical Engineering, 2008, p.27-30
issn
language eng
recordid cdi_ieee_primary_4685551
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Color
Color image segmentation
Data mining
Image segmentation
Information retrieval
Iterative algorithms
K-means algorithm
Kohonen neural network
Neural networks
Pixel
Self organizing feature maps
self-organizing map
title Image segmentation method based on self-organizing maps and K-means algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20segmentation%20method%20based%20on%20self-organizing%20maps%20and%20K-means%20algorithm&rft.btitle=2008%209th%20Symposium%20on%20Neural%20Network%20Applications%20in%20Electrical%20Engineering&rft.au=Ristic,%20D.M.&rft.date=2008-09&rft.spage=27&rft.epage=30&rft.pages=27-30&rft.isbn=142442903X&rft.isbn_list=9781424429035&rft_id=info:doi/10.1109/NEUREL.2008.4685551&rft.eisbn=1424429048&rft.eisbn_list=9781424429042&rft_dat=%3Cieee_6IE%3E4685551%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c140t-3a5a4ed00070af7b96f9f3d194901e289aa1eaa8f1844ec0a373e0cde9e19acd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4685551&rfr_iscdi=true