Loading…
Feature selection and classification for assessment of chronic stroke impairment
Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this pa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 8 |
creator | Jae-Yoon Jung Glasgow, J.I. Scott, S.H. |
description | Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time. |
doi_str_mv | 10.1109/BIBE.2008.4696781 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4696781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4696781</ieee_id><sourcerecordid>20501579</sourcerecordid><originalsourceid>FETCH-LOGICAL-i121t-11e81012b05939e2247f348fa8942c38f81b92bb243b5b2c7fdd28af959fcb433</originalsourceid><addsrcrecordid>eNo1kD9PwzAUxI1QJWjpB0Asntha_OelsUdatVCpEgwwR7b7LAxJXOxk4NuT0nLL6e799IYj5JazOedMPyy3y_VcMKbmsNCLUvELMtWDgQAQCgp1Scb_AdiIjI-sZiUAvyLTnD_ZICjkQsM1ed2g6fqENGONrguxpabdU1ebnIMPzvxVPiY6FJhzg21Ho6fuI8U2OJq7FL-QhuZgQjoeb8jImzrj9OwT8r5Zv62eZ7uXp-3qcTcLXPBuxjkqzriwrNBSoxBQegnKG6VBOKm84lYLawVIW1jhSr_fC2W8LrR3FqSckPvT30OK3z3mrmpCdljXpsXY50qwgvGi1AN4dwIDIlaHFBqTfqrzdPIXqqZgGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20501579</pqid></control><display><type>conference_proceeding</type><title>Feature selection and classification for assessment of chronic stroke impairment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jae-Yoon Jung ; Glasgow, J.I. ; Scott, S.H.</creator><creatorcontrib>Jae-Yoon Jung ; Glasgow, J.I. ; Scott, S.H.</creatorcontrib><description>Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.</description><identifier>ISBN: 1424428440</identifier><identifier>ISBN: 9781424428441</identifier><identifier>EISBN: 9781424428458</identifier><identifier>EISBN: 1424428459</identifier><identifier>DOI: 10.1109/BIBE.2008.4696781</identifier><identifier>LCCN: 2008907441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accidents ; Blood flow ; Brain ; Clinical diagnosis ; Current measurement ; Mechanical variables measurement ; Medical robotics ; Performance evaluation ; Rehabilitation robotics ; Robots</subject><ispartof>2008 8th IEEE International Conference on BioInformatics and BioEngineering, 2008, Vol.8, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4696781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4024,4050,4051,27923,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4696781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jae-Yoon Jung</creatorcontrib><creatorcontrib>Glasgow, J.I.</creatorcontrib><creatorcontrib>Scott, S.H.</creatorcontrib><title>Feature selection and classification for assessment of chronic stroke impairment</title><title>2008 8th IEEE International Conference on BioInformatics and BioEngineering</title><addtitle>BIBE</addtitle><description>Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.</description><subject>Accidents</subject><subject>Blood flow</subject><subject>Brain</subject><subject>Clinical diagnosis</subject><subject>Current measurement</subject><subject>Mechanical variables measurement</subject><subject>Medical robotics</subject><subject>Performance evaluation</subject><subject>Rehabilitation robotics</subject><subject>Robots</subject><isbn>1424428440</isbn><isbn>9781424428441</isbn><isbn>9781424428458</isbn><isbn>1424428459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD9PwzAUxI1QJWjpB0Asntha_OelsUdatVCpEgwwR7b7LAxJXOxk4NuT0nLL6e799IYj5JazOedMPyy3y_VcMKbmsNCLUvELMtWDgQAQCgp1Scb_AdiIjI-sZiUAvyLTnD_ZICjkQsM1ed2g6fqENGONrguxpabdU1ebnIMPzvxVPiY6FJhzg21Ho6fuI8U2OJq7FL-QhuZgQjoeb8jImzrj9OwT8r5Zv62eZ7uXp-3qcTcLXPBuxjkqzriwrNBSoxBQegnKG6VBOKm84lYLawVIW1jhSr_fC2W8LrR3FqSckPvT30OK3z3mrmpCdljXpsXY50qwgvGi1AN4dwIDIlaHFBqTfqrzdPIXqqZgGw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Jae-Yoon Jung</creator><creator>Glasgow, J.I.</creator><creator>Scott, S.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2008</creationdate><title>Feature selection and classification for assessment of chronic stroke impairment</title><author>Jae-Yoon Jung ; Glasgow, J.I. ; Scott, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i121t-11e81012b05939e2247f348fa8942c38f81b92bb243b5b2c7fdd28af959fcb433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accidents</topic><topic>Blood flow</topic><topic>Brain</topic><topic>Clinical diagnosis</topic><topic>Current measurement</topic><topic>Mechanical variables measurement</topic><topic>Medical robotics</topic><topic>Performance evaluation</topic><topic>Rehabilitation robotics</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Jae-Yoon Jung</creatorcontrib><creatorcontrib>Glasgow, J.I.</creatorcontrib><creatorcontrib>Scott, S.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jae-Yoon Jung</au><au>Glasgow, J.I.</au><au>Scott, S.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature selection and classification for assessment of chronic stroke impairment</atitle><btitle>2008 8th IEEE International Conference on BioInformatics and BioEngineering</btitle><stitle>BIBE</stitle><date>2008</date><risdate>2008</risdate><volume>8</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424428440</isbn><isbn>9781424428441</isbn><eisbn>9781424428458</eisbn><eisbn>1424428459</eisbn><abstract>Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2008.4696781</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424428440 |
ispartof | 2008 8th IEEE International Conference on BioInformatics and BioEngineering, 2008, Vol.8, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4696781 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accidents Blood flow Brain Clinical diagnosis Current measurement Mechanical variables measurement Medical robotics Performance evaluation Rehabilitation robotics Robots |
title | Feature selection and classification for assessment of chronic stroke impairment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20selection%20and%20classification%20for%20assessment%20of%20chronic%20stroke%20impairment&rft.btitle=2008%208th%20IEEE%20International%20Conference%20on%20BioInformatics%20and%20BioEngineering&rft.au=Jae-Yoon%20Jung&rft.date=2008&rft.volume=8&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424428440&rft.isbn_list=9781424428441&rft_id=info:doi/10.1109/BIBE.2008.4696781&rft.eisbn=9781424428458&rft.eisbn_list=1424428459&rft_dat=%3Cproquest_6IE%3E20501579%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i121t-11e81012b05939e2247f348fa8942c38f81b92bb243b5b2c7fdd28af959fcb433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20501579&rft_id=info:pmid/&rft_ieee_id=4696781&rfr_iscdi=true |