Loading…

Feature selection and classification for assessment of chronic stroke impairment

Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this pa...

Full description

Saved in:
Bibliographic Details
Main Authors: Jae-Yoon Jung, Glasgow, J.I., Scott, S.H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume 8
creator Jae-Yoon Jung
Glasgow, J.I.
Scott, S.H.
description Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.
doi_str_mv 10.1109/BIBE.2008.4696781
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_4696781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4696781</ieee_id><sourcerecordid>20501579</sourcerecordid><originalsourceid>FETCH-LOGICAL-i121t-11e81012b05939e2247f348fa8942c38f81b92bb243b5b2c7fdd28af959fcb433</originalsourceid><addsrcrecordid>eNo1kD9PwzAUxI1QJWjpB0Asntha_OelsUdatVCpEgwwR7b7LAxJXOxk4NuT0nLL6e799IYj5JazOedMPyy3y_VcMKbmsNCLUvELMtWDgQAQCgp1Scb_AdiIjI-sZiUAvyLTnD_ZICjkQsM1ed2g6fqENGONrguxpabdU1ebnIMPzvxVPiY6FJhzg21Ho6fuI8U2OJq7FL-QhuZgQjoeb8jImzrj9OwT8r5Zv62eZ7uXp-3qcTcLXPBuxjkqzriwrNBSoxBQegnKG6VBOKm84lYLawVIW1jhSr_fC2W8LrR3FqSckPvT30OK3z3mrmpCdljXpsXY50qwgvGi1AN4dwIDIlaHFBqTfqrzdPIXqqZgGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20501579</pqid></control><display><type>conference_proceeding</type><title>Feature selection and classification for assessment of chronic stroke impairment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jae-Yoon Jung ; Glasgow, J.I. ; Scott, S.H.</creator><creatorcontrib>Jae-Yoon Jung ; Glasgow, J.I. ; Scott, S.H.</creatorcontrib><description>Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.</description><identifier>ISBN: 1424428440</identifier><identifier>ISBN: 9781424428441</identifier><identifier>EISBN: 9781424428458</identifier><identifier>EISBN: 1424428459</identifier><identifier>DOI: 10.1109/BIBE.2008.4696781</identifier><identifier>LCCN: 2008907441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accidents ; Blood flow ; Brain ; Clinical diagnosis ; Current measurement ; Mechanical variables measurement ; Medical robotics ; Performance evaluation ; Rehabilitation robotics ; Robots</subject><ispartof>2008 8th IEEE International Conference on BioInformatics and BioEngineering, 2008, Vol.8, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4696781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4024,4050,4051,27923,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4696781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jae-Yoon Jung</creatorcontrib><creatorcontrib>Glasgow, J.I.</creatorcontrib><creatorcontrib>Scott, S.H.</creatorcontrib><title>Feature selection and classification for assessment of chronic stroke impairment</title><title>2008 8th IEEE International Conference on BioInformatics and BioEngineering</title><addtitle>BIBE</addtitle><description>Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.</description><subject>Accidents</subject><subject>Blood flow</subject><subject>Brain</subject><subject>Clinical diagnosis</subject><subject>Current measurement</subject><subject>Mechanical variables measurement</subject><subject>Medical robotics</subject><subject>Performance evaluation</subject><subject>Rehabilitation robotics</subject><subject>Robots</subject><isbn>1424428440</isbn><isbn>9781424428441</isbn><isbn>9781424428458</isbn><isbn>1424428459</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD9PwzAUxI1QJWjpB0Asntha_OelsUdatVCpEgwwR7b7LAxJXOxk4NuT0nLL6e799IYj5JazOedMPyy3y_VcMKbmsNCLUvELMtWDgQAQCgp1Scb_AdiIjI-sZiUAvyLTnD_ZICjkQsM1ed2g6fqENGONrguxpabdU1ebnIMPzvxVPiY6FJhzg21Ho6fuI8U2OJq7FL-QhuZgQjoeb8jImzrj9OwT8r5Zv62eZ7uXp-3qcTcLXPBuxjkqzriwrNBSoxBQegnKG6VBOKm84lYLawVIW1jhSr_fC2W8LrR3FqSckPvT30OK3z3mrmpCdljXpsXY50qwgvGi1AN4dwIDIlaHFBqTfqrzdPIXqqZgGw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Jae-Yoon Jung</creator><creator>Glasgow, J.I.</creator><creator>Scott, S.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2008</creationdate><title>Feature selection and classification for assessment of chronic stroke impairment</title><author>Jae-Yoon Jung ; Glasgow, J.I. ; Scott, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i121t-11e81012b05939e2247f348fa8942c38f81b92bb243b5b2c7fdd28af959fcb433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accidents</topic><topic>Blood flow</topic><topic>Brain</topic><topic>Clinical diagnosis</topic><topic>Current measurement</topic><topic>Mechanical variables measurement</topic><topic>Medical robotics</topic><topic>Performance evaluation</topic><topic>Rehabilitation robotics</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Jae-Yoon Jung</creatorcontrib><creatorcontrib>Glasgow, J.I.</creatorcontrib><creatorcontrib>Scott, S.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jae-Yoon Jung</au><au>Glasgow, J.I.</au><au>Scott, S.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature selection and classification for assessment of chronic stroke impairment</atitle><btitle>2008 8th IEEE International Conference on BioInformatics and BioEngineering</btitle><stitle>BIBE</stitle><date>2008</date><risdate>2008</risdate><volume>8</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424428440</isbn><isbn>9781424428441</isbn><eisbn>9781424428458</eisbn><eisbn>1424428459</eisbn><abstract>Recent advances of robotic/mechanical devices enable us to measure a subjectpsilas performance in an objective and precise manner. The main issue of using such devices is how to represent huge experimental data compactly in order to analyze and compare them with clinical data efficiently. In this paper, we choose a subset of features from real-time experimental data and build a classifier model to assess stroke patientspsila upper limb functionality. We compare our model with combinations of different classifiers and ensemble schemes, showing that it outperforms competitors. We also demonstrate that our results from experimental data are consistent with clinical information, and can capture changes of upper-limb functionality over time.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2008.4696781</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424428440
ispartof 2008 8th IEEE International Conference on BioInformatics and BioEngineering, 2008, Vol.8, p.1-5
issn
language eng
recordid cdi_ieee_primary_4696781
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accidents
Blood flow
Brain
Clinical diagnosis
Current measurement
Mechanical variables measurement
Medical robotics
Performance evaluation
Rehabilitation robotics
Robots
title Feature selection and classification for assessment of chronic stroke impairment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20selection%20and%20classification%20for%20assessment%20of%20chronic%20stroke%20impairment&rft.btitle=2008%208th%20IEEE%20International%20Conference%20on%20BioInformatics%20and%20BioEngineering&rft.au=Jae-Yoon%20Jung&rft.date=2008&rft.volume=8&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424428440&rft.isbn_list=9781424428441&rft_id=info:doi/10.1109/BIBE.2008.4696781&rft.eisbn=9781424428458&rft.eisbn_list=1424428459&rft_dat=%3Cproquest_6IE%3E20501579%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i121t-11e81012b05939e2247f348fa8942c38f81b92bb243b5b2c7fdd28af959fcb433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20501579&rft_id=info:pmid/&rft_ieee_id=4696781&rfr_iscdi=true