Loading…
Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets
In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Reuter, M. |
description | In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4699032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4699032</ieee_id><sourcerecordid>4699032</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ecd24b21386a33adbeca6c16675f1c178eb3d22ac51883408429e69cca706fd83</originalsourceid><addsrcrecordid>eNpVkM9KxDAQxuM_cFn3CbzkqIdKm6RpclwWXYWVPbh4XdJ02o20SWmy6vocPrCpiuAwMHzfx_xg5gjNZCEyISSlOS2KYzQhWc4SJig5-ZcJdvqXEXaOZt6_pLHyKGk6QZ8L1_X7YGyD30zY4bkO5tUEAx4_32B472EwHdigWtwPztU4dtgB9kGVpjXhMBq6dR4q7KGN-dAoaz5GYKd6j6-ap_Wjv8bKVt-LvQsRZyKvdkO3b1Uwzo4QC_shuhaCv0BntWo9zH7nFG3ubjeL-2S1Xj4s5qvEyDQkoCvCSpJRwRWlqipBK64zzou8znRWCChpRYjSeXwGZalgRAKXWqsi5XUl6BRd_mANAGz7eKgaDlvGpUwpoV8nJ2h1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</title><source>IEEE Xplore All Conference Series</source><creator>Reuter, M.</creator><creatorcontrib>Reuter, M.</creatorcontrib><description>In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.</description><identifier>ISSN: 2154-4824</identifier><identifier>ISBN: 9781889335384</identifier><identifier>ISBN: 188933538X</identifier><identifier>EISSN: 2154-4832</identifier><identifier>EISBN: 9781889335377</identifier><identifier>EISBN: 1889335371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical equipment ; Computer industry ; Computing with Activities ; Frequency ; Medical services ; Multidimensional systems ; Neural Impact ; Neural Impulse ; Neural networks ; Neurons ; Predictive control ; Self organizing feature maps ; Stability</subject><ispartof>2008 World Automation Congress, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4699032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4699032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reuter, M.</creatorcontrib><title>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</title><title>2008 World Automation Congress</title><addtitle>WAC</addtitle><description>In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.</description><subject>Biomedical equipment</subject><subject>Computer industry</subject><subject>Computing with Activities</subject><subject>Frequency</subject><subject>Medical services</subject><subject>Multidimensional systems</subject><subject>Neural Impact</subject><subject>Neural Impulse</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Predictive control</subject><subject>Self organizing feature maps</subject><subject>Stability</subject><issn>2154-4824</issn><issn>2154-4832</issn><isbn>9781889335384</isbn><isbn>188933538X</isbn><isbn>9781889335377</isbn><isbn>1889335371</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM9KxDAQxuM_cFn3CbzkqIdKm6RpclwWXYWVPbh4XdJ02o20SWmy6vocPrCpiuAwMHzfx_xg5gjNZCEyISSlOS2KYzQhWc4SJig5-ZcJdvqXEXaOZt6_pLHyKGk6QZ8L1_X7YGyD30zY4bkO5tUEAx4_32B472EwHdigWtwPztU4dtgB9kGVpjXhMBq6dR4q7KGN-dAoaz5GYKd6j6-ap_Wjv8bKVt-LvQsRZyKvdkO3b1Uwzo4QC_shuhaCv0BntWo9zH7nFG3ubjeL-2S1Xj4s5qvEyDQkoCvCSpJRwRWlqipBK64zzou8znRWCChpRYjSeXwGZalgRAKXWqsi5XUl6BRd_mANAGz7eKgaDlvGpUwpoV8nJ2h1</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Reuter, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</title><author>Reuter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ecd24b21386a33adbeca6c16675f1c178eb3d22ac51883408429e69cca706fd83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical equipment</topic><topic>Computer industry</topic><topic>Computing with Activities</topic><topic>Frequency</topic><topic>Medical services</topic><topic>Multidimensional systems</topic><topic>Neural Impact</topic><topic>Neural Impulse</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Predictive control</topic><topic>Self organizing feature maps</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Reuter, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reuter, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</atitle><btitle>2008 World Automation Congress</btitle><stitle>WAC</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2154-4824</issn><eissn>2154-4832</eissn><isbn>9781889335384</isbn><isbn>188933538X</isbn><eisbn>9781889335377</eisbn><eisbn>1889335371</eisbn><abstract>In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2154-4824 |
ispartof | 2008 World Automation Congress, 2008, p.1-6 |
issn | 2154-4824 2154-4832 |
language | eng |
recordid | cdi_ieee_primary_4699032 |
source | IEEE Xplore All Conference Series |
subjects | Biomedical equipment Computer industry Computing with Activities Frequency Medical services Multidimensional systems Neural Impact Neural Impulse Neural networks Neurons Predictive control Self organizing feature maps Stability |
title | Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computing%20with%20Activities%20V.%20experimental%20proof%20of%20the%20stability%20of%20closed%20self%20organizing%20maps%20(gSOMs)%20and%20the%20potential%20formulation%20of%20neural%20nets&rft.btitle=2008%20World%20Automation%20Congress&rft.au=Reuter,%20M.&rft.date=2008-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2154-4824&rft.eissn=2154-4832&rft.isbn=9781889335384&rft.isbn_list=188933538X&rft_id=info:doi/&rft.eisbn=9781889335377&rft.eisbn_list=1889335371&rft_dat=%3Cieee_CHZPO%3E4699032%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ecd24b21386a33adbeca6c16675f1c178eb3d22ac51883408429e69cca706fd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4699032&rfr_iscdi=true |