Loading…

Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets

In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until...

Full description

Saved in:
Bibliographic Details
Main Author: Reuter, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Reuter, M.
description In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4699032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4699032</ieee_id><sourcerecordid>4699032</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ecd24b21386a33adbeca6c16675f1c178eb3d22ac51883408429e69cca706fd83</originalsourceid><addsrcrecordid>eNpVkM9KxDAQxuM_cFn3CbzkqIdKm6RpclwWXYWVPbh4XdJ02o20SWmy6vocPrCpiuAwMHzfx_xg5gjNZCEyISSlOS2KYzQhWc4SJig5-ZcJdvqXEXaOZt6_pLHyKGk6QZ8L1_X7YGyD30zY4bkO5tUEAx4_32B472EwHdigWtwPztU4dtgB9kGVpjXhMBq6dR4q7KGN-dAoaz5GYKd6j6-ap_Wjv8bKVt-LvQsRZyKvdkO3b1Uwzo4QC_shuhaCv0BntWo9zH7nFG3ubjeL-2S1Xj4s5qvEyDQkoCvCSpJRwRWlqipBK64zzou8znRWCChpRYjSeXwGZalgRAKXWqsi5XUl6BRd_mANAGz7eKgaDlvGpUwpoV8nJ2h1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</title><source>IEEE Xplore All Conference Series</source><creator>Reuter, M.</creator><creatorcontrib>Reuter, M.</creatorcontrib><description>In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.</description><identifier>ISSN: 2154-4824</identifier><identifier>ISBN: 9781889335384</identifier><identifier>ISBN: 188933538X</identifier><identifier>EISSN: 2154-4832</identifier><identifier>EISBN: 9781889335377</identifier><identifier>EISBN: 1889335371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical equipment ; Computer industry ; Computing with Activities ; Frequency ; Medical services ; Multidimensional systems ; Neural Impact ; Neural Impulse ; Neural networks ; Neurons ; Predictive control ; Self organizing feature maps ; Stability</subject><ispartof>2008 World Automation Congress, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4699032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4699032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reuter, M.</creatorcontrib><title>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</title><title>2008 World Automation Congress</title><addtitle>WAC</addtitle><description>In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.</description><subject>Biomedical equipment</subject><subject>Computer industry</subject><subject>Computing with Activities</subject><subject>Frequency</subject><subject>Medical services</subject><subject>Multidimensional systems</subject><subject>Neural Impact</subject><subject>Neural Impulse</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Predictive control</subject><subject>Self organizing feature maps</subject><subject>Stability</subject><issn>2154-4824</issn><issn>2154-4832</issn><isbn>9781889335384</isbn><isbn>188933538X</isbn><isbn>9781889335377</isbn><isbn>1889335371</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM9KxDAQxuM_cFn3CbzkqIdKm6RpclwWXYWVPbh4XdJ02o20SWmy6vocPrCpiuAwMHzfx_xg5gjNZCEyISSlOS2KYzQhWc4SJig5-ZcJdvqXEXaOZt6_pLHyKGk6QZ8L1_X7YGyD30zY4bkO5tUEAx4_32B472EwHdigWtwPztU4dtgB9kGVpjXhMBq6dR4q7KGN-dAoaz5GYKd6j6-ap_Wjv8bKVt-LvQsRZyKvdkO3b1Uwzo4QC_shuhaCv0BntWo9zH7nFG3ubjeL-2S1Xj4s5qvEyDQkoCvCSpJRwRWlqipBK64zzou8znRWCChpRYjSeXwGZalgRAKXWqsi5XUl6BRd_mANAGz7eKgaDlvGpUwpoV8nJ2h1</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Reuter, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</title><author>Reuter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ecd24b21386a33adbeca6c16675f1c178eb3d22ac51883408429e69cca706fd83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical equipment</topic><topic>Computer industry</topic><topic>Computing with Activities</topic><topic>Frequency</topic><topic>Medical services</topic><topic>Multidimensional systems</topic><topic>Neural Impact</topic><topic>Neural Impulse</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Predictive control</topic><topic>Self organizing feature maps</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Reuter, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reuter, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets</atitle><btitle>2008 World Automation Congress</btitle><stitle>WAC</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2154-4824</issn><eissn>2154-4832</eissn><isbn>9781889335384</isbn><isbn>188933538X</isbn><eisbn>9781889335377</eisbn><eisbn>1889335371</eisbn><abstract>In the last years the method of the computing of activities (CWA) has found it application in several industrial and medical applications. So we can show that especially predictive control can by handled by this special coding of information on closed self organizing maps (gSOMs). Nevertheless until today the mathematical proof, why CWA can guarantee predictive control and especially can guaranty stability was outstanding. The following paper presents the experimental proof of these premises, if a potential oriented formulation of the neural nets is used. Furthermore we show that the parameters impulse and impact of the nets leads to a better control of SOMs.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2154-4824
ispartof 2008 World Automation Congress, 2008, p.1-6
issn 2154-4824
2154-4832
language eng
recordid cdi_ieee_primary_4699032
source IEEE Xplore All Conference Series
subjects Biomedical equipment
Computer industry
Computing with Activities
Frequency
Medical services
Multidimensional systems
Neural Impact
Neural Impulse
Neural networks
Neurons
Predictive control
Self organizing feature maps
Stability
title Computing with Activities V. experimental proof of the stability of closed self organizing maps (gSOMs) and the potential formulation of neural nets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computing%20with%20Activities%20V.%20experimental%20proof%20of%20the%20stability%20of%20closed%20self%20organizing%20maps%20(gSOMs)%20and%20the%20potential%20formulation%20of%20neural%20nets&rft.btitle=2008%20World%20Automation%20Congress&rft.au=Reuter,%20M.&rft.date=2008-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2154-4824&rft.eissn=2154-4832&rft.isbn=9781889335384&rft.isbn_list=188933538X&rft_id=info:doi/&rft.eisbn=9781889335377&rft.eisbn_list=1889335371&rft_dat=%3Cieee_CHZPO%3E4699032%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ecd24b21386a33adbeca6c16675f1c178eb3d22ac51883408429e69cca706fd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4699032&rfr_iscdi=true