Loading…

Normalization and preimage problem in gaussian kernel PCA

Kernel PCA has received a lot of attention over the past years and showed usefull for many image processing problems. In this paper we analyse the issue of normalization in Kernel PCA for the pre-image problem. We present a geometric interpretation of the normalization process for the gaussian kerne...

Full description

Saved in:
Bibliographic Details
Main Authors: Thorstensen, N., Segonne, F., Keriven, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 744
container_issue
container_start_page 741
container_title
container_volume
creator Thorstensen, N.
Segonne, F.
Keriven, R.
description Kernel PCA has received a lot of attention over the past years and showed usefull for many image processing problems. In this paper we analyse the issue of normalization in Kernel PCA for the pre-image problem. We present a geometric interpretation of the normalization process for the gaussian kernel. As a consequence, we could formulate a correct normalization criterion in centered feature space. Furthermore, we show how the proposed normalization criterion improves previous pre-image methods for the task of image denoising.
doi_str_mv 10.1109/ICIP.2008.4711861
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4711861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711861</ieee_id><sourcerecordid>4711861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-9f373af2cb67dfe9ae16b3de34460da5fc0da10634102248151fd7d2119b2efe3</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1LIpR-AGLjH0i513b8WFYRhUgVdAHryqmvK0MeVVIW8PVEohs2MyMdaTQaxu4QFojgHqqy2iwEgF0og2g1nrG5MxaVUAqNVvKcZUJazG2h3MU_VsAly7AQIlfWwjW7GccPAAEoMWPupR9a36Qff0x9x30X-GGg1Po9TaGvG2p56vjef41j8h3_pKGjhm_K5S27ir4ZaX7yGXtfPb6Vz_n69akql-s8CbTH3EVppI9iV2sTIjlPqGsZSCqlIfgi7iZF0FIhCKEsFhiDCQLR1YIiyRm7_-tNRLQ9DNO24Xt7ekH-Ao_5S3I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Normalization and preimage problem in gaussian kernel PCA</title><source>IEEE Xplore All Conference Series</source><creator>Thorstensen, N. ; Segonne, F. ; Keriven, R.</creator><creatorcontrib>Thorstensen, N. ; Segonne, F. ; Keriven, R.</creatorcontrib><description>Kernel PCA has received a lot of attention over the past years and showed usefull for many image processing problems. In this paper we analyse the issue of normalization in Kernel PCA for the pre-image problem. We present a geometric interpretation of the normalization process for the gaussian kernel. As a consequence, we could formulate a correct normalization criterion in centered feature space. Furthermore, we show how the proposed normalization criterion improves previous pre-image methods for the task of image denoising.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424417650</identifier><identifier>ISBN: 1424417651</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424417643</identifier><identifier>EISBN: 1424417643</identifier><identifier>DOI: 10.1109/ICIP.2008.4711861</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data analysis ; Image denoising ; Image processing ; Image recognition ; Kernel ; Kernel PCA ; Out-of-Sample ; Pattern recognition ; Principal component analysis ; Shape ; Signal reconstruction ; Training data</subject><ispartof>2008 15th IEEE International Conference on Image Processing, 2008, p.741-744</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4711861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thorstensen, N.</creatorcontrib><creatorcontrib>Segonne, F.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><title>Normalization and preimage problem in gaussian kernel PCA</title><title>2008 15th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Kernel PCA has received a lot of attention over the past years and showed usefull for many image processing problems. In this paper we analyse the issue of normalization in Kernel PCA for the pre-image problem. We present a geometric interpretation of the normalization process for the gaussian kernel. As a consequence, we could formulate a correct normalization criterion in centered feature space. Furthermore, we show how the proposed normalization criterion improves previous pre-image methods for the task of image denoising.</description><subject>Data analysis</subject><subject>Image denoising</subject><subject>Image processing</subject><subject>Image recognition</subject><subject>Kernel</subject><subject>Kernel PCA</subject><subject>Out-of-Sample</subject><subject>Pattern recognition</subject><subject>Principal component analysis</subject><subject>Shape</subject><subject>Signal reconstruction</subject><subject>Training data</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424417650</isbn><isbn>1424417651</isbn><isbn>9781424417643</isbn><isbn>1424417643</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtOwzAURM1LIpR-AGLjH0i513b8WFYRhUgVdAHryqmvK0MeVVIW8PVEohs2MyMdaTQaxu4QFojgHqqy2iwEgF0og2g1nrG5MxaVUAqNVvKcZUJazG2h3MU_VsAly7AQIlfWwjW7GccPAAEoMWPupR9a36Qff0x9x30X-GGg1Po9TaGvG2p56vjef41j8h3_pKGjhm_K5S27ir4ZaX7yGXtfPb6Vz_n69akql-s8CbTH3EVppI9iV2sTIjlPqGsZSCqlIfgi7iZF0FIhCKEsFhiDCQLR1YIiyRm7_-tNRLQ9DNO24Xt7ekH-Ao_5S3I</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Thorstensen, N.</creator><creator>Segonne, F.</creator><creator>Keriven, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>Normalization and preimage problem in gaussian kernel PCA</title><author>Thorstensen, N. ; Segonne, F. ; Keriven, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-9f373af2cb67dfe9ae16b3de34460da5fc0da10634102248151fd7d2119b2efe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Data analysis</topic><topic>Image denoising</topic><topic>Image processing</topic><topic>Image recognition</topic><topic>Kernel</topic><topic>Kernel PCA</topic><topic>Out-of-Sample</topic><topic>Pattern recognition</topic><topic>Principal component analysis</topic><topic>Shape</topic><topic>Signal reconstruction</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Thorstensen, N.</creatorcontrib><creatorcontrib>Segonne, F.</creatorcontrib><creatorcontrib>Keriven, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thorstensen, N.</au><au>Segonne, F.</au><au>Keriven, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Normalization and preimage problem in gaussian kernel PCA</atitle><btitle>2008 15th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2008-10</date><risdate>2008</risdate><spage>741</spage><epage>744</epage><pages>741-744</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424417650</isbn><isbn>1424417651</isbn><eisbn>9781424417643</eisbn><eisbn>1424417643</eisbn><abstract>Kernel PCA has received a lot of attention over the past years and showed usefull for many image processing problems. In this paper we analyse the issue of normalization in Kernel PCA for the pre-image problem. We present a geometric interpretation of the normalization process for the gaussian kernel. As a consequence, we could formulate a correct normalization criterion in centered feature space. Furthermore, we show how the proposed normalization criterion improves previous pre-image methods for the task of image denoising.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2008.4711861</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2008 15th IEEE International Conference on Image Processing, 2008, p.741-744
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4711861
source IEEE Xplore All Conference Series
subjects Data analysis
Image denoising
Image processing
Image recognition
Kernel
Kernel PCA
Out-of-Sample
Pattern recognition
Principal component analysis
Shape
Signal reconstruction
Training data
title Normalization and preimage problem in gaussian kernel PCA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Normalization%20and%20preimage%20problem%20in%20gaussian%20kernel%20PCA&rft.btitle=2008%2015th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Thorstensen,%20N.&rft.date=2008-10&rft.spage=741&rft.epage=744&rft.pages=741-744&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424417650&rft.isbn_list=1424417651&rft_id=info:doi/10.1109/ICIP.2008.4711861&rft.eisbn=9781424417643&rft.eisbn_list=1424417643&rft_dat=%3Cieee_CHZPO%3E4711861%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-9f373af2cb67dfe9ae16b3de34460da5fc0da10634102248151fd7d2119b2efe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4711861&rfr_iscdi=true