Loading…
Chi-Sim: A New Similarity Measure for the Co-clustering Task
Co-clustering has been widely studied in recent years. Exploiting the duality between objects and features efficiently helps in better clustering both objects and features. In contrast with current co-clustering algorithms that focus on directly finding some patterns in the data matrix, in this pape...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Co-clustering has been widely studied in recent years. Exploiting the duality between objects and features efficiently helps in better clustering both objects and features. In contrast with current co-clustering algorithms that focus on directly finding some patterns in the data matrix, in this paper we define a (co-)similarity measure, named X-Sim, which iteratively computes the similarity between objects and their features. Thus, it becomes possible to use any clustering methods (k-means, ...) to co-cluster data. The experiments show that our algorithm not only outperforms the classical similarity measure but also outperforms some co-clustering algorithms on the document-clustering task. |
---|---|
DOI: | 10.1109/ICMLA.2008.103 |