Loading…

Semantics Sensitive Segmentation and Annotation of Natural Images

In this paper, we present new perceptual techniques for segmentation and annotation of natural images. The image segmentation approach is a multilevel clustering method based on a new proposed non-parametric clustering algorithm, called adaptive medoidshift (AMS) and normalized cuts (N-cut). The AMS...

Full description

Saved in:
Bibliographic Details
Main Authors: Asghar, A., Rao, N.I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 394
container_issue
container_start_page 387
container_title
container_volume
creator Asghar, A.
Rao, N.I.
description In this paper, we present new perceptual techniques for segmentation and annotation of natural images. The image segmentation approach is a multilevel clustering method based on a new proposed non-parametric clustering algorithm, called adaptive medoidshift (AMS) and normalized cuts (N-cut). The AMS method locally clusters the image color composition by considering their spatial distribution into uniform segments, which are then perceptually group together using N-cut into meaningful semantic sensitive salient regions. The proposed image annotation approach assigns labels at segment and scene level to represent semantic content and concept of image respectively. The low level features are extracted from the obtained salient regions and are used by support vector machine (SVM) classifiers to assign segment labels, which are then used to derive scene labels. This effectively reduces the ¿semantic gap¿ between low level features and high level semantics. Experiments show the effectiveness of proposed algorithms on variety of natural images.
doi_str_mv 10.1109/SITIS.2008.55
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4725831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4725831</ieee_id><sourcerecordid>4725831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1648f11408e711398f94bbdfed7db0a8906817ebfb11139d36a3eb0b4af761a03</originalsourceid><addsrcrecordid>eNotjk1Lw0AYhBekoNYcPXnJH0jcN_t9DMWPQKmH1HPZNe-WlWYj2VXw35ti5zIzPDAMIfdAawBqHvtu3_V1Q6muhbgihVGaKmkE44bRFbk9E0O1AHlNipQ-6SJmpGj0DWl7HG3M4SOVPcYUcvjBJR1HjNnmMMXSxqFsY5wudfLlzubv2Z7KbrRHTHdk5e0pYXHxNXl_ftpvXqvt20u3abdVACVyBZJrD8CpRgXAjPaGOzd4HNTgqF0OSg0KnXdwxgOTlqGjjluvJFjK1uThfzcg4uFrDqOdfw9cNUIzYH98PUoq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semantics Sensitive Segmentation and Annotation of Natural Images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Asghar, A. ; Rao, N.I.</creator><creatorcontrib>Asghar, A. ; Rao, N.I.</creatorcontrib><description>In this paper, we present new perceptual techniques for segmentation and annotation of natural images. The image segmentation approach is a multilevel clustering method based on a new proposed non-parametric clustering algorithm, called adaptive medoidshift (AMS) and normalized cuts (N-cut). The AMS method locally clusters the image color composition by considering their spatial distribution into uniform segments, which are then perceptually group together using N-cut into meaningful semantic sensitive salient regions. The proposed image annotation approach assigns labels at segment and scene level to represent semantic content and concept of image respectively. The low level features are extracted from the obtained salient regions and are used by support vector machine (SVM) classifiers to assign segment labels, which are then used to derive scene labels. This effectively reduces the ¿semantic gap¿ between low level features and high level semantics. Experiments show the effectiveness of proposed algorithms on variety of natural images.</description><identifier>ISBN: 9780769534930</identifier><identifier>ISBN: 0769534937</identifier><identifier>DOI: 10.1109/SITIS.2008.55</identifier><identifier>LCCN: 2008908516</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Bridges ; Clustering algorithms ; Feature extraction ; Image retrieval ; Image segmentation ; Image storage ; Layout ; Support vector machine classification ; Support vector machines</subject><ispartof>2008 IEEE International Conference on Signal Image Technology and Internet Based Systems, 2008, p.387-394</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4725831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4725831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asghar, A.</creatorcontrib><creatorcontrib>Rao, N.I.</creatorcontrib><title>Semantics Sensitive Segmentation and Annotation of Natural Images</title><title>2008 IEEE International Conference on Signal Image Technology and Internet Based Systems</title><addtitle>SITIS</addtitle><description>In this paper, we present new perceptual techniques for segmentation and annotation of natural images. The image segmentation approach is a multilevel clustering method based on a new proposed non-parametric clustering algorithm, called adaptive medoidshift (AMS) and normalized cuts (N-cut). The AMS method locally clusters the image color composition by considering their spatial distribution into uniform segments, which are then perceptually group together using N-cut into meaningful semantic sensitive salient regions. The proposed image annotation approach assigns labels at segment and scene level to represent semantic content and concept of image respectively. The low level features are extracted from the obtained salient regions and are used by support vector machine (SVM) classifiers to assign segment labels, which are then used to derive scene labels. This effectively reduces the ¿semantic gap¿ between low level features and high level semantics. Experiments show the effectiveness of proposed algorithms on variety of natural images.</description><subject>Bandwidth</subject><subject>Bridges</subject><subject>Clustering algorithms</subject><subject>Feature extraction</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Image storage</subject><subject>Layout</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>9780769534930</isbn><isbn>0769534937</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1Lw0AYhBekoNYcPXnJH0jcN_t9DMWPQKmH1HPZNe-WlWYj2VXw35ti5zIzPDAMIfdAawBqHvtu3_V1Q6muhbgihVGaKmkE44bRFbk9E0O1AHlNipQ-6SJmpGj0DWl7HG3M4SOVPcYUcvjBJR1HjNnmMMXSxqFsY5wudfLlzubv2Z7KbrRHTHdk5e0pYXHxNXl_ftpvXqvt20u3abdVACVyBZJrD8CpRgXAjPaGOzd4HNTgqF0OSg0KnXdwxgOTlqGjjluvJFjK1uThfzcg4uFrDqOdfw9cNUIzYH98PUoq</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Asghar, A.</creator><creator>Rao, N.I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Semantics Sensitive Segmentation and Annotation of Natural Images</title><author>Asghar, A. ; Rao, N.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1648f11408e711398f94bbdfed7db0a8906817ebfb11139d36a3eb0b4af761a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bandwidth</topic><topic>Bridges</topic><topic>Clustering algorithms</topic><topic>Feature extraction</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Image storage</topic><topic>Layout</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Asghar, A.</creatorcontrib><creatorcontrib>Rao, N.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asghar, A.</au><au>Rao, N.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semantics Sensitive Segmentation and Annotation of Natural Images</atitle><btitle>2008 IEEE International Conference on Signal Image Technology and Internet Based Systems</btitle><stitle>SITIS</stitle><date>2008-11</date><risdate>2008</risdate><spage>387</spage><epage>394</epage><pages>387-394</pages><isbn>9780769534930</isbn><isbn>0769534937</isbn><abstract>In this paper, we present new perceptual techniques for segmentation and annotation of natural images. The image segmentation approach is a multilevel clustering method based on a new proposed non-parametric clustering algorithm, called adaptive medoidshift (AMS) and normalized cuts (N-cut). The AMS method locally clusters the image color composition by considering their spatial distribution into uniform segments, which are then perceptually group together using N-cut into meaningful semantic sensitive salient regions. The proposed image annotation approach assigns labels at segment and scene level to represent semantic content and concept of image respectively. The low level features are extracted from the obtained salient regions and are used by support vector machine (SVM) classifiers to assign segment labels, which are then used to derive scene labels. This effectively reduces the ¿semantic gap¿ between low level features and high level semantics. Experiments show the effectiveness of proposed algorithms on variety of natural images.</abstract><pub>IEEE</pub><doi>10.1109/SITIS.2008.55</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769534930
ispartof 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems, 2008, p.387-394
issn
language eng
recordid cdi_ieee_primary_4725831
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bandwidth
Bridges
Clustering algorithms
Feature extraction
Image retrieval
Image segmentation
Image storage
Layout
Support vector machine classification
Support vector machines
title Semantics Sensitive Segmentation and Annotation of Natural Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semantics%20Sensitive%20Segmentation%20and%20Annotation%20of%20Natural%20Images&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Signal%20Image%20Technology%20and%20Internet%20Based%20Systems&rft.au=Asghar,%20A.&rft.date=2008-11&rft.spage=387&rft.epage=394&rft.pages=387-394&rft.isbn=9780769534930&rft.isbn_list=0769534937&rft_id=info:doi/10.1109/SITIS.2008.55&rft_dat=%3Cieee_6IE%3E4725831%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1648f11408e711398f94bbdfed7db0a8906817ebfb11139d36a3eb0b4af761a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4725831&rfr_iscdi=true