Loading…

The Improved Markov Error Correcting Method in Gray SVM for Power Load Forecasting

As the power load forecasting sequence has stochastic growth and nonlinear wave characteristics, grey SVM can effective reflect the growth properties of the sequence and fit the nonlinear relation. Markov chain can easily embody the random characteristic of system by complex factors, so the Markov c...

Full description

Saved in:
Bibliographic Details
Main Authors: Dongxiao Niu, Jialiang Lv, Xingzhi Zhang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 796
container_issue
container_start_page 793
container_title
container_volume
creator Dongxiao Niu
Jialiang Lv
Xingzhi Zhang
description As the power load forecasting sequence has stochastic growth and nonlinear wave characteristics, grey SVM can effective reflect the growth properties of the sequence and fit the nonlinear relation. Markov chain can easily embody the random characteristic of system by complex factors, so the Markov chain error correction method was introduce in this paper, the whole forecasting precision of the sequence was optimized, and the transfer matrix for the forecasting sequence was decided, then the accuracy for power load forecasting was greatly improved. Through the demonstration test, the precision is better than ingenuous grey SVM, the method in this paper have feasibility in practice.
doi_str_mv 10.1109/IITA.Workshops.2008.88
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4732056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4732056</ieee_id><sourcerecordid>4732056</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-2c0b19ff91ba2a2aebc36d8850f0652ad97be428fb81928da4bde8d1e95688933</originalsourceid><addsrcrecordid>eNotzNFKwzAYBeCADHRzTyBIXqD1T9K0yeUo2yy0KFr1cqTNX1vnlpKWyd7eDuVcHDh8HELuGYSMgX7IsnIVfji_H1rXDyEHUKFSV2QOSaylkCCjGZlfZg1aJeyaLIfhCwCYjhMm5A15KVuk2aH37oSWFsbv3YmuvXeeps57rMfu-EkLHFtnaXekW2_O9PW9oM0knt0Pepo7Y-nGTdYMF31LZo35HnD53wvytlmX6WOQP22zdJUHHQM5BryGiumm0awyfApWtYitUhIaiCU3VicVRlw1lWKaK2uiyqKyDLWMldJCLMjd32-HiLvedwfjz7soERxkLH4BHppSpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Improved Markov Error Correcting Method in Gray SVM for Power Load Forecasting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dongxiao Niu ; Jialiang Lv ; Xingzhi Zhang</creator><creatorcontrib>Dongxiao Niu ; Jialiang Lv ; Xingzhi Zhang</creatorcontrib><description>As the power load forecasting sequence has stochastic growth and nonlinear wave characteristics, grey SVM can effective reflect the growth properties of the sequence and fit the nonlinear relation. Markov chain can easily embody the random characteristic of system by complex factors, so the Markov chain error correction method was introduce in this paper, the whole forecasting precision of the sequence was optimized, and the transfer matrix for the forecasting sequence was decided, then the accuracy for power load forecasting was greatly improved. Through the demonstration test, the precision is better than ingenuous grey SVM, the method in this paper have feasibility in practice.</description><identifier>ISBN: 0769535054</identifier><identifier>ISBN: 9780769535050</identifier><identifier>DOI: 10.1109/IITA.Workshops.2008.88</identifier><identifier>LCCN: 2008909871</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer errors ; Error correction ; Information technology ; Load forecasting ; markov chain ; Optimization methods ; Power load ; Predictive models ; Stochastic systems ; Support vector machines ; SVM algorithm ; Technology forecasting ; Testing</subject><ispartof>2008 International Symposium on Intelligent Information Technology Application Workshops, 2008, p.793-796</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4732056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4732056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dongxiao Niu</creatorcontrib><creatorcontrib>Jialiang Lv</creatorcontrib><creatorcontrib>Xingzhi Zhang</creatorcontrib><title>The Improved Markov Error Correcting Method in Gray SVM for Power Load Forecasting</title><title>2008 International Symposium on Intelligent Information Technology Application Workshops</title><addtitle>IITAW</addtitle><description>As the power load forecasting sequence has stochastic growth and nonlinear wave characteristics, grey SVM can effective reflect the growth properties of the sequence and fit the nonlinear relation. Markov chain can easily embody the random characteristic of system by complex factors, so the Markov chain error correction method was introduce in this paper, the whole forecasting precision of the sequence was optimized, and the transfer matrix for the forecasting sequence was decided, then the accuracy for power load forecasting was greatly improved. Through the demonstration test, the precision is better than ingenuous grey SVM, the method in this paper have feasibility in practice.</description><subject>Computer errors</subject><subject>Error correction</subject><subject>Information technology</subject><subject>Load forecasting</subject><subject>markov chain</subject><subject>Optimization methods</subject><subject>Power load</subject><subject>Predictive models</subject><subject>Stochastic systems</subject><subject>Support vector machines</subject><subject>SVM algorithm</subject><subject>Technology forecasting</subject><subject>Testing</subject><isbn>0769535054</isbn><isbn>9780769535050</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzNFKwzAYBeCADHRzTyBIXqD1T9K0yeUo2yy0KFr1cqTNX1vnlpKWyd7eDuVcHDh8HELuGYSMgX7IsnIVfji_H1rXDyEHUKFSV2QOSaylkCCjGZlfZg1aJeyaLIfhCwCYjhMm5A15KVuk2aH37oSWFsbv3YmuvXeeps57rMfu-EkLHFtnaXekW2_O9PW9oM0knt0Pepo7Y-nGTdYMF31LZo35HnD53wvytlmX6WOQP22zdJUHHQM5BryGiumm0awyfApWtYitUhIaiCU3VicVRlw1lWKaK2uiyqKyDLWMldJCLMjd32-HiLvedwfjz7soERxkLH4BHppSpQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Dongxiao Niu</creator><creator>Jialiang Lv</creator><creator>Xingzhi Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>The Improved Markov Error Correcting Method in Gray SVM for Power Load Forecasting</title><author>Dongxiao Niu ; Jialiang Lv ; Xingzhi Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-2c0b19ff91ba2a2aebc36d8850f0652ad97be428fb81928da4bde8d1e95688933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer errors</topic><topic>Error correction</topic><topic>Information technology</topic><topic>Load forecasting</topic><topic>markov chain</topic><topic>Optimization methods</topic><topic>Power load</topic><topic>Predictive models</topic><topic>Stochastic systems</topic><topic>Support vector machines</topic><topic>SVM algorithm</topic><topic>Technology forecasting</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dongxiao Niu</creatorcontrib><creatorcontrib>Jialiang Lv</creatorcontrib><creatorcontrib>Xingzhi Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dongxiao Niu</au><au>Jialiang Lv</au><au>Xingzhi Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Improved Markov Error Correcting Method in Gray SVM for Power Load Forecasting</atitle><btitle>2008 International Symposium on Intelligent Information Technology Application Workshops</btitle><stitle>IITAW</stitle><date>2008-12</date><risdate>2008</risdate><spage>793</spage><epage>796</epage><pages>793-796</pages><isbn>0769535054</isbn><isbn>9780769535050</isbn><abstract>As the power load forecasting sequence has stochastic growth and nonlinear wave characteristics, grey SVM can effective reflect the growth properties of the sequence and fit the nonlinear relation. Markov chain can easily embody the random characteristic of system by complex factors, so the Markov chain error correction method was introduce in this paper, the whole forecasting precision of the sequence was optimized, and the transfer matrix for the forecasting sequence was decided, then the accuracy for power load forecasting was greatly improved. Through the demonstration test, the precision is better than ingenuous grey SVM, the method in this paper have feasibility in practice.</abstract><pub>IEEE</pub><doi>10.1109/IITA.Workshops.2008.88</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769535054
ispartof 2008 International Symposium on Intelligent Information Technology Application Workshops, 2008, p.793-796
issn
language eng
recordid cdi_ieee_primary_4732056
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer errors
Error correction
Information technology
Load forecasting
markov chain
Optimization methods
Power load
Predictive models
Stochastic systems
Support vector machines
SVM algorithm
Technology forecasting
Testing
title The Improved Markov Error Correcting Method in Gray SVM for Power Load Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Improved%20Markov%20Error%20Correcting%20Method%20in%20Gray%20SVM%20for%20Power%20Load%20Forecasting&rft.btitle=2008%20International%20Symposium%20on%20Intelligent%20Information%20Technology%20Application%20Workshops&rft.au=Dongxiao%20Niu&rft.date=2008-12&rft.spage=793&rft.epage=796&rft.pages=793-796&rft.isbn=0769535054&rft.isbn_list=9780769535050&rft_id=info:doi/10.1109/IITA.Workshops.2008.88&rft_dat=%3Cieee_6IE%3E4732056%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-2c0b19ff91ba2a2aebc36d8850f0652ad97be428fb81928da4bde8d1e95688933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4732056&rfr_iscdi=true