Loading…
Topological identification in networks of dynamical systems
The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to eva...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 828 |
container_issue | |
container_start_page | 823 |
container_title | |
container_volume | |
creator | Materassi, D. Innocenti, G. |
description | The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well. |
doi_str_mv | 10.1109/CDC.2008.4739317 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4739317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4739317</ieee_id><sourcerecordid>4739317</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d6fdf39e17d19507b873b0f441f68d6b0fb6c767e9c18846ec97bfcf6c364183</originalsourceid><addsrcrecordid>eNpVkEtLxDAUhSM6YB1nL7jpH-iY22TuTXAl9QkDbrof2jwk2jZDU5D-e4vOxtX5Dhy-xWHsBvgWgOu76rHalpyrrSShBdAZ22hSIEspBZRSnP_rAi9YxkFDUZaAK5aRLlByjXDJrlL65IuJI2bsvo7H2MWPYJouD9YNU_ALTyEOeRjywU3fcfxKefS5nYem_92lOU2uT9ds5Zsuuc0p16x-fqqr12L__vJWPeyLALSbCoveeqEdkAW949QqEi33UoJHZXHBFg0hOW1AKYnOaGq98WgESlBizW7_tME5dziOoW_G-XC6QfwAGmpMjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Topological identification in networks of dynamical systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Materassi, D. ; Innocenti, G.</creator><creatorcontrib>Materassi, D. ; Innocenti, G.</creatorcontrib><description>The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424431236</identifier><identifier>ISBN: 1424431239</identifier><identifier>EISBN: 9781424431243</identifier><identifier>EISBN: 1424431247</identifier><identifier>DOI: 10.1109/CDC.2008.4739317</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Computational biology ; Control systems ; Delay ; Environmental factors ; Graph theory ; Network topology ; Neural networks ; Power system modeling ; Transfer functions</subject><ispartof>2008 47th IEEE Conference on Decision and Control, 2008, p.823-828</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4739317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4739317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Materassi, D.</creatorcontrib><creatorcontrib>Innocenti, G.</creatorcontrib><title>Topological identification in networks of dynamical systems</title><title>2008 47th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.</description><subject>Biological system modeling</subject><subject>Computational biology</subject><subject>Control systems</subject><subject>Delay</subject><subject>Environmental factors</subject><subject>Graph theory</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Power system modeling</subject><subject>Transfer functions</subject><issn>0191-2216</issn><isbn>9781424431236</isbn><isbn>1424431239</isbn><isbn>9781424431243</isbn><isbn>1424431247</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtLxDAUhSM6YB1nL7jpH-iY22TuTXAl9QkDbrof2jwk2jZDU5D-e4vOxtX5Dhy-xWHsBvgWgOu76rHalpyrrSShBdAZ22hSIEspBZRSnP_rAi9YxkFDUZaAK5aRLlByjXDJrlL65IuJI2bsvo7H2MWPYJouD9YNU_ALTyEOeRjywU3fcfxKefS5nYem_92lOU2uT9ds5Zsuuc0p16x-fqqr12L__vJWPeyLALSbCoveeqEdkAW949QqEi33UoJHZXHBFg0hOW1AKYnOaGq98WgESlBizW7_tME5dziOoW_G-XC6QfwAGmpMjQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Materassi, D.</creator><creator>Innocenti, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200812</creationdate><title>Topological identification in networks of dynamical systems</title><author>Materassi, D. ; Innocenti, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d6fdf39e17d19507b873b0f441f68d6b0fb6c767e9c18846ec97bfcf6c364183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological system modeling</topic><topic>Computational biology</topic><topic>Control systems</topic><topic>Delay</topic><topic>Environmental factors</topic><topic>Graph theory</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Power system modeling</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Materassi, D.</creatorcontrib><creatorcontrib>Innocenti, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Materassi, D.</au><au>Innocenti, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Topological identification in networks of dynamical systems</atitle><btitle>2008 47th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2008-12</date><risdate>2008</risdate><spage>823</spage><epage>828</epage><pages>823-828</pages><issn>0191-2216</issn><isbn>9781424431236</isbn><isbn>1424431239</isbn><eisbn>9781424431243</eisbn><eisbn>1424431247</eisbn><abstract>The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2008.4739317</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2008 47th IEEE Conference on Decision and Control, 2008, p.823-828 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_4739317 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Computational biology Control systems Delay Environmental factors Graph theory Network topology Neural networks Power system modeling Transfer functions |
title | Topological identification in networks of dynamical systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Topological%20identification%20in%20networks%20of%20dynamical%20systems&rft.btitle=2008%2047th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Materassi,%20D.&rft.date=2008-12&rft.spage=823&rft.epage=828&rft.pages=823-828&rft.issn=0191-2216&rft.isbn=9781424431236&rft.isbn_list=1424431239&rft_id=info:doi/10.1109/CDC.2008.4739317&rft.eisbn=9781424431243&rft.eisbn_list=1424431247&rft_dat=%3Cieee_6IE%3E4739317%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d6fdf39e17d19507b873b0f441f68d6b0fb6c767e9c18846ec97bfcf6c364183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4739317&rfr_iscdi=true |