Loading…

Topological identification in networks of dynamical systems

The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to eva...

Full description

Saved in:
Bibliographic Details
Main Authors: Materassi, D., Innocenti, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 828
container_issue
container_start_page 823
container_title
container_volume
creator Materassi, D.
Innocenti, G.
description The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.
doi_str_mv 10.1109/CDC.2008.4739317
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4739317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4739317</ieee_id><sourcerecordid>4739317</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d6fdf39e17d19507b873b0f441f68d6b0fb6c767e9c18846ec97bfcf6c364183</originalsourceid><addsrcrecordid>eNpVkEtLxDAUhSM6YB1nL7jpH-iY22TuTXAl9QkDbrof2jwk2jZDU5D-e4vOxtX5Dhy-xWHsBvgWgOu76rHalpyrrSShBdAZ22hSIEspBZRSnP_rAi9YxkFDUZaAK5aRLlByjXDJrlL65IuJI2bsvo7H2MWPYJouD9YNU_ALTyEOeRjywU3fcfxKefS5nYem_92lOU2uT9ds5Zsuuc0p16x-fqqr12L__vJWPeyLALSbCoveeqEdkAW949QqEi33UoJHZXHBFg0hOW1AKYnOaGq98WgESlBizW7_tME5dziOoW_G-XC6QfwAGmpMjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Topological identification in networks of dynamical systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Materassi, D. ; Innocenti, G.</creator><creatorcontrib>Materassi, D. ; Innocenti, G.</creatorcontrib><description>The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424431236</identifier><identifier>ISBN: 1424431239</identifier><identifier>EISBN: 9781424431243</identifier><identifier>EISBN: 1424431247</identifier><identifier>DOI: 10.1109/CDC.2008.4739317</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Computational biology ; Control systems ; Delay ; Environmental factors ; Graph theory ; Network topology ; Neural networks ; Power system modeling ; Transfer functions</subject><ispartof>2008 47th IEEE Conference on Decision and Control, 2008, p.823-828</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4739317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4739317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Materassi, D.</creatorcontrib><creatorcontrib>Innocenti, G.</creatorcontrib><title>Topological identification in networks of dynamical systems</title><title>2008 47th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.</description><subject>Biological system modeling</subject><subject>Computational biology</subject><subject>Control systems</subject><subject>Delay</subject><subject>Environmental factors</subject><subject>Graph theory</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Power system modeling</subject><subject>Transfer functions</subject><issn>0191-2216</issn><isbn>9781424431236</isbn><isbn>1424431239</isbn><isbn>9781424431243</isbn><isbn>1424431247</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtLxDAUhSM6YB1nL7jpH-iY22TuTXAl9QkDbrof2jwk2jZDU5D-e4vOxtX5Dhy-xWHsBvgWgOu76rHalpyrrSShBdAZ22hSIEspBZRSnP_rAi9YxkFDUZaAK5aRLlByjXDJrlL65IuJI2bsvo7H2MWPYJouD9YNU_ALTyEOeRjywU3fcfxKefS5nYem_92lOU2uT9ds5Zsuuc0p16x-fqqr12L__vJWPeyLALSbCoveeqEdkAW949QqEi33UoJHZXHBFg0hOW1AKYnOaGq98WgESlBizW7_tME5dziOoW_G-XC6QfwAGmpMjQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Materassi, D.</creator><creator>Innocenti, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200812</creationdate><title>Topological identification in networks of dynamical systems</title><author>Materassi, D. ; Innocenti, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d6fdf39e17d19507b873b0f441f68d6b0fb6c767e9c18846ec97bfcf6c364183</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological system modeling</topic><topic>Computational biology</topic><topic>Control systems</topic><topic>Delay</topic><topic>Environmental factors</topic><topic>Graph theory</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Power system modeling</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Materassi, D.</creatorcontrib><creatorcontrib>Innocenti, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Materassi, D.</au><au>Innocenti, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Topological identification in networks of dynamical systems</atitle><btitle>2008 47th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2008-12</date><risdate>2008</risdate><spage>823</spage><epage>828</epage><pages>823-828</pages><issn>0191-2216</issn><isbn>9781424431236</isbn><isbn>1424431239</isbn><eisbn>9781424431243</eisbn><eisbn>1424431247</eisbn><abstract>The paper deals with the problem of identifying the topological structure of a network of dynamical systems. The dependencies among the measured signals are assumed linear and the approach is non causal, that is data are assumed to be analized off-line. A distance function is defined in order to evaluate the ¿closeness¿ of two processes and a few useful mathematical properties are derived. Theoretical results to guarantee the correctness of the identification procedure are provided as well.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2008.4739317</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2008 47th IEEE Conference on Decision and Control, 2008, p.823-828
issn 0191-2216
language eng
recordid cdi_ieee_primary_4739317
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Computational biology
Control systems
Delay
Environmental factors
Graph theory
Network topology
Neural networks
Power system modeling
Transfer functions
title Topological identification in networks of dynamical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Topological%20identification%20in%20networks%20of%20dynamical%20systems&rft.btitle=2008%2047th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Materassi,%20D.&rft.date=2008-12&rft.spage=823&rft.epage=828&rft.pages=823-828&rft.issn=0191-2216&rft.isbn=9781424431236&rft.isbn_list=1424431239&rft_id=info:doi/10.1109/CDC.2008.4739317&rft.eisbn=9781424431243&rft.eisbn_list=1424431247&rft_dat=%3Cieee_6IE%3E4739317%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d6fdf39e17d19507b873b0f441f68d6b0fb6c767e9c18846ec97bfcf6c364183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4739317&rfr_iscdi=true