Loading…
Alpha spectral analysis via artificial neural networks
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and f...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 421 vol.1 |
container_issue | |
container_start_page | 418 |
container_title | |
container_volume | 1 |
creator | Kangas, L.J. Troyer, G.L. Keller, P.E. Hashem, S. Kouzes, R.T. |
description | An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. Our investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system.< > |
doi_str_mv | 10.1109/NSSMIC.1994.474348 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_474348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>474348</ieee_id><sourcerecordid>474348</sourcerecordid><originalsourceid>FETCH-LOGICAL-i148t-87b98b7330310a4032d7ae21a1e9133447c3979575763671338cecc50292356e3</originalsourceid><addsrcrecordid>eNotj81KA0EQhAdEUOK-QE77ArvObPf8HcPiTyDRQ_QcOmMHR9e4zKxK3t7BWBQUfIeiSoi5kq1S0l8_bDbrZd8q77FFi4DuTFTeOlkMnUb0F6LK-U0WodaozKUwi2F8pTqPHKZEQ00HGo455vo7Uk1pivsYYuEH_kp_Mf18pvd8Jc73NGSu_nMmnm9vnvr7ZvV4t-wXqyYqdFPj7M67nQWQoCRhWfFiiTtFir0CQLQBvPXaamvA2IJc4BC07HwH2jDMxPzUG5l5O6b4Qem4PZ2DXzxeQ2Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Alpha spectral analysis via artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kangas, L.J. ; Troyer, G.L. ; Keller, P.E. ; Hashem, S. ; Kouzes, R.T.</creator><creatorcontrib>Kangas, L.J. ; Troyer, G.L. ; Keller, P.E. ; Hashem, S. ; Kouzes, R.T.</creatorcontrib><description>An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. Our investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system.< ></description><identifier>ISBN: 9780780325449</identifier><identifier>ISBN: 0780325443</identifier><identifier>DOI: 10.1109/NSSMIC.1994.474348</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air cleaners ; Alpha particles ; Artificial neural networks ; Degradation ; Filters ; Instruments ; Laboratories ; Performance evaluation ; Q factor ; Spectral analysis</subject><ispartof>Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94, 1994, Vol.1, p.418-421 vol.1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/474348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/474348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kangas, L.J.</creatorcontrib><creatorcontrib>Troyer, G.L.</creatorcontrib><creatorcontrib>Keller, P.E.</creatorcontrib><creatorcontrib>Hashem, S.</creatorcontrib><creatorcontrib>Kouzes, R.T.</creatorcontrib><title>Alpha spectral analysis via artificial neural networks</title><title>Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94</title><addtitle>NSSMIC</addtitle><description>An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. Our investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system.< ></description><subject>Air cleaners</subject><subject>Alpha particles</subject><subject>Artificial neural networks</subject><subject>Degradation</subject><subject>Filters</subject><subject>Instruments</subject><subject>Laboratories</subject><subject>Performance evaluation</subject><subject>Q factor</subject><subject>Spectral analysis</subject><isbn>9780780325449</isbn><isbn>0780325443</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KA0EQhAdEUOK-QE77ArvObPf8HcPiTyDRQ_QcOmMHR9e4zKxK3t7BWBQUfIeiSoi5kq1S0l8_bDbrZd8q77FFi4DuTFTeOlkMnUb0F6LK-U0WodaozKUwi2F8pTqPHKZEQ00HGo455vo7Uk1pivsYYuEH_kp_Mf18pvd8Jc73NGSu_nMmnm9vnvr7ZvV4t-wXqyYqdFPj7M67nQWQoCRhWfFiiTtFir0CQLQBvPXaamvA2IJc4BC07HwH2jDMxPzUG5l5O6b4Qem4PZ2DXzxeQ2Y</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Kangas, L.J.</creator><creator>Troyer, G.L.</creator><creator>Keller, P.E.</creator><creator>Hashem, S.</creator><creator>Kouzes, R.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Alpha spectral analysis via artificial neural networks</title><author>Kangas, L.J. ; Troyer, G.L. ; Keller, P.E. ; Hashem, S. ; Kouzes, R.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i148t-87b98b7330310a4032d7ae21a1e9133447c3979575763671338cecc50292356e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Air cleaners</topic><topic>Alpha particles</topic><topic>Artificial neural networks</topic><topic>Degradation</topic><topic>Filters</topic><topic>Instruments</topic><topic>Laboratories</topic><topic>Performance evaluation</topic><topic>Q factor</topic><topic>Spectral analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kangas, L.J.</creatorcontrib><creatorcontrib>Troyer, G.L.</creatorcontrib><creatorcontrib>Keller, P.E.</creatorcontrib><creatorcontrib>Hashem, S.</creatorcontrib><creatorcontrib>Kouzes, R.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kangas, L.J.</au><au>Troyer, G.L.</au><au>Keller, P.E.</au><au>Hashem, S.</au><au>Kouzes, R.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Alpha spectral analysis via artificial neural networks</atitle><btitle>Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94</btitle><stitle>NSSMIC</stitle><date>1994</date><risdate>1994</risdate><volume>1</volume><spage>418</spage><epage>421 vol.1</epage><pages>418-421 vol.1</pages><isbn>9780780325449</isbn><isbn>0780325443</isbn><abstract>An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. Our investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system.< ></abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.1994.474348</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780325449 |
ispartof | Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94, 1994, Vol.1, p.418-421 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_474348 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Air cleaners Alpha particles Artificial neural networks Degradation Filters Instruments Laboratories Performance evaluation Q factor Spectral analysis |
title | Alpha spectral analysis via artificial neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Alpha%20spectral%20analysis%20via%20artificial%20neural%20networks&rft.btitle=Proceedings%20of%201994%20IEEE%20Nuclear%20Science%20Symposium%20-%20NSS'94&rft.au=Kangas,%20L.J.&rft.date=1994&rft.volume=1&rft.spage=418&rft.epage=421%20vol.1&rft.pages=418-421%20vol.1&rft.isbn=9780780325449&rft.isbn_list=0780325443&rft_id=info:doi/10.1109/NSSMIC.1994.474348&rft_dat=%3Cieee_6IE%3E474348%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i148t-87b98b7330310a4032d7ae21a1e9133447c3979575763671338cecc50292356e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=474348&rfr_iscdi=true |