Loading…

Selection of an appropriate classification technique for coastal biomass mapping using high and low resolution dataset

Mangrove forest is an integral part of inter-tidal zone of the coastal environment extending throughout the tropics and subtropics of the world. There is a wide spectrum of economic and ecological utility of Indus delta mangrove forests, sixth largest man groves forest of 92 countries. Over the last...

Full description

Saved in:
Bibliographic Details
Main Authors: Saeed, U., Fatima, K., Gilani, H., Daud, A., Ashraf, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 84
container_issue
container_start_page 80
container_title
container_volume
creator Saeed, U.
Fatima, K.
Gilani, H.
Daud, A.
Ashraf, S.
description Mangrove forest is an integral part of inter-tidal zone of the coastal environment extending throughout the tropics and subtropics of the world. There is a wide spectrum of economic and ecological utility of Indus delta mangrove forests, sixth largest man groves forest of 92 countries. Over the last decades, numerous classification techniques/software have been used to extract deltaic vegetation information through remotely sensed data. In the present research paper, two different techniques (maximum likelihood classification and subpixel classification) were applied at high and low resolution satellite data. The aim was to propose best classification technique for the mapping and management of coastal green gold. Study highlights the draw backs of traditional classification results at low resolution satellite dataset. Subpixel classification results applied on medium resolution image were satisfactory and comparable with maximum likelihood classification results at high resolution satellite data.
doi_str_mv 10.1109/ICAST.2008.4747691
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4747691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4747691</ieee_id><sourcerecordid>4747691</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6af2550fea7709fc92097ac90e5f12f1457247c7cb1c492fbb7f896491eddbdf3</originalsourceid><addsrcrecordid>eNpNkM9OwzAMh4PQJGDsBeCSF-hw0nSpj2jinzSJw3af3NTZgrpmNB2It6cbO-CDLUufP-lnIe4UTJUCfHibPy5XUw1QTo01dobqQkzQlspoY_IcQF3-2zViORI3RxwBtYUrMUnpA4YyRY65uRZfS27Y9SG2MnpJraT9vov7LlDP0jWUUvDB0Qno2W3b8Hlg6WMnXaTUUyOrEHcDJnfDZWg38pCOfRs220FXyyZ-y45TbA4nR009Je5vxchTk3hynmOxen5azV-zxfvLkHGRBYQ-m5HXRQGeyVpA71ADWnIIXHilvTKF1cY66yrlDGpfVdaXODOouK6r2udjcf-nDcy8HlLtqPtZnz-X_wLqgmLC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selection of an appropriate classification technique for coastal biomass mapping using high and low resolution dataset</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saeed, U. ; Fatima, K. ; Gilani, H. ; Daud, A. ; Ashraf, S.</creator><creatorcontrib>Saeed, U. ; Fatima, K. ; Gilani, H. ; Daud, A. ; Ashraf, S.</creatorcontrib><description>Mangrove forest is an integral part of inter-tidal zone of the coastal environment extending throughout the tropics and subtropics of the world. There is a wide spectrum of economic and ecological utility of Indus delta mangrove forests, sixth largest man groves forest of 92 countries. Over the last decades, numerous classification techniques/software have been used to extract deltaic vegetation information through remotely sensed data. In the present research paper, two different techniques (maximum likelihood classification and subpixel classification) were applied at high and low resolution satellite data. The aim was to propose best classification technique for the mapping and management of coastal green gold. Study highlights the draw backs of traditional classification results at low resolution satellite dataset. Subpixel classification results applied on medium resolution image were satisfactory and comparable with maximum likelihood classification results at high resolution satellite data.</description><identifier>ISBN: 9781424432998</identifier><identifier>ISBN: 1424432995</identifier><identifier>EISBN: 9781424433001</identifier><identifier>EISBN: 1424433002</identifier><identifier>DOI: 10.1109/ICAST.2008.4747691</identifier><identifier>LCCN: 2008909270</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomass ; Ecosystems ; Image resolution ; Marine animals ; Maximum likelihood estimation ; Remote sensing ; Satellites ; Sea measurements ; Vegetation mapping ; Water pollution</subject><ispartof>2008 2nd International Conference on Advances in Space Technologies, 2008, p.80-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4747691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4747691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saeed, U.</creatorcontrib><creatorcontrib>Fatima, K.</creatorcontrib><creatorcontrib>Gilani, H.</creatorcontrib><creatorcontrib>Daud, A.</creatorcontrib><creatorcontrib>Ashraf, S.</creatorcontrib><title>Selection of an appropriate classification technique for coastal biomass mapping using high and low resolution dataset</title><title>2008 2nd International Conference on Advances in Space Technologies</title><addtitle>ICAST</addtitle><description>Mangrove forest is an integral part of inter-tidal zone of the coastal environment extending throughout the tropics and subtropics of the world. There is a wide spectrum of economic and ecological utility of Indus delta mangrove forests, sixth largest man groves forest of 92 countries. Over the last decades, numerous classification techniques/software have been used to extract deltaic vegetation information through remotely sensed data. In the present research paper, two different techniques (maximum likelihood classification and subpixel classification) were applied at high and low resolution satellite data. The aim was to propose best classification technique for the mapping and management of coastal green gold. Study highlights the draw backs of traditional classification results at low resolution satellite dataset. Subpixel classification results applied on medium resolution image were satisfactory and comparable with maximum likelihood classification results at high resolution satellite data.</description><subject>Biomass</subject><subject>Ecosystems</subject><subject>Image resolution</subject><subject>Marine animals</subject><subject>Maximum likelihood estimation</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sea measurements</subject><subject>Vegetation mapping</subject><subject>Water pollution</subject><isbn>9781424432998</isbn><isbn>1424432995</isbn><isbn>9781424433001</isbn><isbn>1424433002</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkM9OwzAMh4PQJGDsBeCSF-hw0nSpj2jinzSJw3af3NTZgrpmNB2It6cbO-CDLUufP-lnIe4UTJUCfHibPy5XUw1QTo01dobqQkzQlspoY_IcQF3-2zViORI3RxwBtYUrMUnpA4YyRY65uRZfS27Y9SG2MnpJraT9vov7LlDP0jWUUvDB0Qno2W3b8Hlg6WMnXaTUUyOrEHcDJnfDZWg38pCOfRs220FXyyZ-y45TbA4nR009Je5vxchTk3hynmOxen5azV-zxfvLkHGRBYQ-m5HXRQGeyVpA71ADWnIIXHilvTKF1cY66yrlDGpfVdaXODOouK6r2udjcf-nDcy8HlLtqPtZnz-X_wLqgmLC</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Saeed, U.</creator><creator>Fatima, K.</creator><creator>Gilani, H.</creator><creator>Daud, A.</creator><creator>Ashraf, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Selection of an appropriate classification technique for coastal biomass mapping using high and low resolution dataset</title><author>Saeed, U. ; Fatima, K. ; Gilani, H. ; Daud, A. ; Ashraf, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6af2550fea7709fc92097ac90e5f12f1457247c7cb1c492fbb7f896491eddbdf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomass</topic><topic>Ecosystems</topic><topic>Image resolution</topic><topic>Marine animals</topic><topic>Maximum likelihood estimation</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sea measurements</topic><topic>Vegetation mapping</topic><topic>Water pollution</topic><toplevel>online_resources</toplevel><creatorcontrib>Saeed, U.</creatorcontrib><creatorcontrib>Fatima, K.</creatorcontrib><creatorcontrib>Gilani, H.</creatorcontrib><creatorcontrib>Daud, A.</creatorcontrib><creatorcontrib>Ashraf, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saeed, U.</au><au>Fatima, K.</au><au>Gilani, H.</au><au>Daud, A.</au><au>Ashraf, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selection of an appropriate classification technique for coastal biomass mapping using high and low resolution dataset</atitle><btitle>2008 2nd International Conference on Advances in Space Technologies</btitle><stitle>ICAST</stitle><date>2008-11</date><risdate>2008</risdate><spage>80</spage><epage>84</epage><pages>80-84</pages><isbn>9781424432998</isbn><isbn>1424432995</isbn><eisbn>9781424433001</eisbn><eisbn>1424433002</eisbn><abstract>Mangrove forest is an integral part of inter-tidal zone of the coastal environment extending throughout the tropics and subtropics of the world. There is a wide spectrum of economic and ecological utility of Indus delta mangrove forests, sixth largest man groves forest of 92 countries. Over the last decades, numerous classification techniques/software have been used to extract deltaic vegetation information through remotely sensed data. In the present research paper, two different techniques (maximum likelihood classification and subpixel classification) were applied at high and low resolution satellite data. The aim was to propose best classification technique for the mapping and management of coastal green gold. Study highlights the draw backs of traditional classification results at low resolution satellite dataset. Subpixel classification results applied on medium resolution image were satisfactory and comparable with maximum likelihood classification results at high resolution satellite data.</abstract><pub>IEEE</pub><doi>10.1109/ICAST.2008.4747691</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424432998
ispartof 2008 2nd International Conference on Advances in Space Technologies, 2008, p.80-84
issn
language eng
recordid cdi_ieee_primary_4747691
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomass
Ecosystems
Image resolution
Marine animals
Maximum likelihood estimation
Remote sensing
Satellites
Sea measurements
Vegetation mapping
Water pollution
title Selection of an appropriate classification technique for coastal biomass mapping using high and low resolution dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selection%20of%20an%20appropriate%20classification%20technique%20for%20coastal%20biomass%20mapping%20using%20high%20and%20low%20resolution%20dataset&rft.btitle=2008%202nd%20International%20Conference%20on%20Advances%20in%20Space%20Technologies&rft.au=Saeed,%20U.&rft.date=2008-11&rft.spage=80&rft.epage=84&rft.pages=80-84&rft.isbn=9781424432998&rft.isbn_list=1424432995&rft_id=info:doi/10.1109/ICAST.2008.4747691&rft.eisbn=9781424433001&rft.eisbn_list=1424433002&rft_dat=%3Cieee_6IE%3E4747691%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-6af2550fea7709fc92097ac90e5f12f1457247c7cb1c492fbb7f896491eddbdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4747691&rfr_iscdi=true