Loading…

Differential evolution optimization of DSKF algorithm for sensorless SFO control of IM drives

This paper proposes a speed-sensorless stator field orientation control (SFOC) of IM drives based on a delayed-state Kalman filter (DSKF) optimally tuned with the differential evolution (DE) algorithm. The DSKF estimates the stator flux components in the stationary reference frame, using the derivat...

Full description

Saved in:
Bibliographic Details
Main Authors: Salvatore, N., Cascella, G.L., Caponio, A., Stasi, S., Neri, F.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1154
container_issue
container_start_page 1149
container_title
container_volume
creator Salvatore, N.
Cascella, G.L.
Caponio, A.
Stasi, S.
Neri, F.
description This paper proposes a speed-sensorless stator field orientation control (SFOC) of IM drives based on a delayed-state Kalman filter (DSKF) optimally tuned with the differential evolution (DE) algorithm. The DSKF estimates the stator flux components in the stationary reference frame, using the derivatives of the stator flux components as mathematical model and the stator voltage equations as observation model. The DE algorithm gives the values of the covariance matrices of model and measurement errors to obtain optimal performance from the DSKF. The DE is a reliable and versatile function optimizer that has not yet been widely implemented in the field of electrical drives. It performs extremely well for the problem under analysis. The DE outperformed the best known GAs on proposed optimization problem. The paper investigates the responses to a load speed reversal as well as to a training test at low speed and the experiments show the low-speed performance of the sensorless control scheme using the new optimized DSKF.
doi_str_mv 10.1109/IECON.2008.4758116
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4758116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4758116</ieee_id><sourcerecordid>4758116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d5de66779c5a84933181605f7b82c95b8b1be060e9afe0af805dadfbcf4461693</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMqWGtfQDd5gam5M_ldStvRYrWLduFGSmbmRiPTSUnGgj69Srtxdfjg8HE4hFwDGwMwczufTZbP45wxPeZKaAB5QkZGaeA556CkVKf_WPEzMgAhikyo_OWCXKb0wZjgWsKAvE69cxix671tKe5D-9n70NGw6_3Wf9sDODpdPZbUtm8h-v59S12INGGXQmwxJboql7QOXR9D-1eeP9Em-j2mK3LubJtwdMwhWZez9eQhWyzv55O7ReYN67NGNPi7WplaWM1NUYAGyYRTlc5rIypdQYVMMjTWIbNOM9HYxlW141yCNMWQ3By0HhE3u-i3Nn5tjucUP_BaV2s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Differential evolution optimization of DSKF algorithm for sensorless SFO control of IM drives</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salvatore, N. ; Cascella, G.L. ; Caponio, A. ; Stasi, S. ; Neri, F.</creator><creatorcontrib>Salvatore, N. ; Cascella, G.L. ; Caponio, A. ; Stasi, S. ; Neri, F.</creatorcontrib><description>This paper proposes a speed-sensorless stator field orientation control (SFOC) of IM drives based on a delayed-state Kalman filter (DSKF) optimally tuned with the differential evolution (DE) algorithm. The DSKF estimates the stator flux components in the stationary reference frame, using the derivatives of the stator flux components as mathematical model and the stator voltage equations as observation model. The DE algorithm gives the values of the covariance matrices of model and measurement errors to obtain optimal performance from the DSKF. The DE is a reliable and versatile function optimizer that has not yet been widely implemented in the field of electrical drives. It performs extremely well for the problem under analysis. The DE outperformed the best known GAs on proposed optimization problem. The paper investigates the responses to a load speed reversal as well as to a training test at low speed and the experiments show the low-speed performance of the sensorless control scheme using the new optimized DSKF.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781424417674</identifier><identifier>ISBN: 1424417678</identifier><identifier>EISBN: 9781424417667</identifier><identifier>EISBN: 142441766X</identifier><identifier>DOI: 10.1109/IECON.2008.4758116</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Delay ; Equations ; Mathematical model ; Measurement errors ; Performance analysis ; Position control ; Sensorless control ; Stators ; Voltage</subject><ispartof>2008 34th Annual Conference of IEEE Industrial Electronics, 2008, p.1149-1154</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4758116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4758116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salvatore, N.</creatorcontrib><creatorcontrib>Cascella, G.L.</creatorcontrib><creatorcontrib>Caponio, A.</creatorcontrib><creatorcontrib>Stasi, S.</creatorcontrib><creatorcontrib>Neri, F.</creatorcontrib><title>Differential evolution optimization of DSKF algorithm for sensorless SFO control of IM drives</title><title>2008 34th Annual Conference of IEEE Industrial Electronics</title><addtitle>IECON</addtitle><description>This paper proposes a speed-sensorless stator field orientation control (SFOC) of IM drives based on a delayed-state Kalman filter (DSKF) optimally tuned with the differential evolution (DE) algorithm. The DSKF estimates the stator flux components in the stationary reference frame, using the derivatives of the stator flux components as mathematical model and the stator voltage equations as observation model. The DE algorithm gives the values of the covariance matrices of model and measurement errors to obtain optimal performance from the DSKF. The DE is a reliable and versatile function optimizer that has not yet been widely implemented in the field of electrical drives. It performs extremely well for the problem under analysis. The DE outperformed the best known GAs on proposed optimization problem. The paper investigates the responses to a load speed reversal as well as to a training test at low speed and the experiments show the low-speed performance of the sensorless control scheme using the new optimized DSKF.</description><subject>Covariance matrix</subject><subject>Delay</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Measurement errors</subject><subject>Performance analysis</subject><subject>Position control</subject><subject>Sensorless control</subject><subject>Stators</subject><subject>Voltage</subject><issn>1553-572X</issn><isbn>9781424417674</isbn><isbn>1424417678</isbn><isbn>9781424417667</isbn><isbn>142441766X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1KAzEUhSMqWGtfQDd5gam5M_ldStvRYrWLduFGSmbmRiPTSUnGgj69Srtxdfjg8HE4hFwDGwMwczufTZbP45wxPeZKaAB5QkZGaeA556CkVKf_WPEzMgAhikyo_OWCXKb0wZjgWsKAvE69cxix671tKe5D-9n70NGw6_3Wf9sDODpdPZbUtm8h-v59S12INGGXQmwxJboql7QOXR9D-1eeP9Em-j2mK3LubJtwdMwhWZez9eQhWyzv55O7ReYN67NGNPi7WplaWM1NUYAGyYRTlc5rIypdQYVMMjTWIbNOM9HYxlW141yCNMWQ3By0HhE3u-i3Nn5tjucUP_BaV2s</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Salvatore, N.</creator><creator>Cascella, G.L.</creator><creator>Caponio, A.</creator><creator>Stasi, S.</creator><creator>Neri, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200811</creationdate><title>Differential evolution optimization of DSKF algorithm for sensorless SFO control of IM drives</title><author>Salvatore, N. ; Cascella, G.L. ; Caponio, A. ; Stasi, S. ; Neri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d5de66779c5a84933181605f7b82c95b8b1be060e9afe0af805dadfbcf4461693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Covariance matrix</topic><topic>Delay</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Measurement errors</topic><topic>Performance analysis</topic><topic>Position control</topic><topic>Sensorless control</topic><topic>Stators</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Salvatore, N.</creatorcontrib><creatorcontrib>Cascella, G.L.</creatorcontrib><creatorcontrib>Caponio, A.</creatorcontrib><creatorcontrib>Stasi, S.</creatorcontrib><creatorcontrib>Neri, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salvatore, N.</au><au>Cascella, G.L.</au><au>Caponio, A.</au><au>Stasi, S.</au><au>Neri, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Differential evolution optimization of DSKF algorithm for sensorless SFO control of IM drives</atitle><btitle>2008 34th Annual Conference of IEEE Industrial Electronics</btitle><stitle>IECON</stitle><date>2008-11</date><risdate>2008</risdate><spage>1149</spage><epage>1154</epage><pages>1149-1154</pages><issn>1553-572X</issn><isbn>9781424417674</isbn><isbn>1424417678</isbn><eisbn>9781424417667</eisbn><eisbn>142441766X</eisbn><abstract>This paper proposes a speed-sensorless stator field orientation control (SFOC) of IM drives based on a delayed-state Kalman filter (DSKF) optimally tuned with the differential evolution (DE) algorithm. The DSKF estimates the stator flux components in the stationary reference frame, using the derivatives of the stator flux components as mathematical model and the stator voltage equations as observation model. The DE algorithm gives the values of the covariance matrices of model and measurement errors to obtain optimal performance from the DSKF. The DE is a reliable and versatile function optimizer that has not yet been widely implemented in the field of electrical drives. It performs extremely well for the problem under analysis. The DE outperformed the best known GAs on proposed optimization problem. The paper investigates the responses to a load speed reversal as well as to a training test at low speed and the experiments show the low-speed performance of the sensorless control scheme using the new optimized DSKF.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2008.4758116</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, p.1149-1154
issn 1553-572X
language eng
recordid cdi_ieee_primary_4758116
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrix
Delay
Equations
Mathematical model
Measurement errors
Performance analysis
Position control
Sensorless control
Stators
Voltage
title Differential evolution optimization of DSKF algorithm for sensorless SFO control of IM drives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Differential%20evolution%20optimization%20of%20DSKF%20algorithm%20for%20sensorless%20SFO%20control%20of%20IM%20drives&rft.btitle=2008%2034th%20Annual%20Conference%20of%20IEEE%20Industrial%20Electronics&rft.au=Salvatore,%20N.&rft.date=2008-11&rft.spage=1149&rft.epage=1154&rft.pages=1149-1154&rft.issn=1553-572X&rft.isbn=9781424417674&rft.isbn_list=1424417678&rft_id=info:doi/10.1109/IECON.2008.4758116&rft.eisbn=9781424417667&rft.eisbn_list=142441766X&rft_dat=%3Cieee_6IE%3E4758116%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-d5de66779c5a84933181605f7b82c95b8b1be060e9afe0af805dadfbcf4461693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4758116&rfr_iscdi=true