Loading…
Improvement of feature matching in catadioptric images using gyroscope data
Most of vision-based algorithms for motion and localization estimation requires matching some interest points in a pair of images. After building feature correspondence, it is possible to estimate camera motion/localization using epipolar geometry. However feature matching is still a challenging pro...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Bazin, J.-C. Inso Kweon Demonceaux, C. Vasseur, P. |
description | Most of vision-based algorithms for motion and localization estimation requires matching some interest points in a pair of images. After building feature correspondence, it is possible to estimate camera motion/localization using epipolar geometry. However feature matching is still a challenging problem because of time constraint or image variability for example. In several robotic applications, the camera rotation may be known thanks to a gyroscope or another orientation sensor. Therefore, in this paper, we aim to answer the following question: can the knowledge of rotation from a gyroscope be used to improve feature matching. To analyze this new approach of camera and gyroscope data fusion, we proceed in two steps. First, we rotationally align the images using rotation information of the gyroscope. And second, we compare the quality of feature matching in the original and rotationally aligned images. Experimental results on a real catadioptric sequence show that gyroscope data permits to sensibly improve the number of inliers according to epipolar geometry. |
doi_str_mv | 10.1109/ICPR.2008.4761039 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4761039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761039</ieee_id><sourcerecordid>4761039</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9c6297b5eeab88931369b501516b702c617c0e1ea21840b9f64f6efcf1b3d67f3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhccXWGt_gLiZP5B677xnKcVHsaBI92UyuRNHTBOSVOi_t2I3rs7iO3wcDmM3CHNE8HfLxdv7XAC4ubIGQfoTNvPWoRJKCbTanLKJcBILq6w--8eUP2cTBI2FMhov2dUwfAIIkNpN2Muy6fr2mxrajrxNPFEYdz3xJozxI29rnrc8hjFUue3GPkeem1DTwHfDL6z3fTvEtiNeHTrX7CKFr4Fmx5yy9ePDevFcrF6flov7VZE9jIWPRnhbaqJQOuclSuNLDajRlBZENGgjEFIQ6BSUPhmVDKWYsJSVsUlO2e2fNhPRpusPi_r95niL_AELiVJW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improvement of feature matching in catadioptric images using gyroscope data</title><source>IEEE Xplore All Conference Series</source><creator>Bazin, J.-C. ; Inso Kweon ; Demonceaux, C. ; Vasseur, P.</creator><creatorcontrib>Bazin, J.-C. ; Inso Kweon ; Demonceaux, C. ; Vasseur, P.</creatorcontrib><description>Most of vision-based algorithms for motion and localization estimation requires matching some interest points in a pair of images. After building feature correspondence, it is possible to estimate camera motion/localization using epipolar geometry. However feature matching is still a challenging problem because of time constraint or image variability for example. In several robotic applications, the camera rotation may be known thanks to a gyroscope or another orientation sensor. Therefore, in this paper, we aim to answer the following question: can the knowledge of rotation from a gyroscope be used to improve feature matching. To analyze this new approach of camera and gyroscope data fusion, we proceed in two steps. First, we rotationally align the images using rotation information of the gyroscope. And second, we compare the quality of feature matching in the original and rotationally aligned images. Experimental results on a real catadioptric sequence show that gyroscope data permits to sensibly improve the number of inliers according to epipolar geometry.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761039</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Feature extraction ; Geometry ; Gyroscopes ; Lighting ; Mirrors ; Motion estimation ; Noise robustness ; Robot sensing systems ; Robot vision systems</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761039$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bazin, J.-C.</creatorcontrib><creatorcontrib>Inso Kweon</creatorcontrib><creatorcontrib>Demonceaux, C.</creatorcontrib><creatorcontrib>Vasseur, P.</creatorcontrib><title>Improvement of feature matching in catadioptric images using gyroscope data</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Most of vision-based algorithms for motion and localization estimation requires matching some interest points in a pair of images. After building feature correspondence, it is possible to estimate camera motion/localization using epipolar geometry. However feature matching is still a challenging problem because of time constraint or image variability for example. In several robotic applications, the camera rotation may be known thanks to a gyroscope or another orientation sensor. Therefore, in this paper, we aim to answer the following question: can the knowledge of rotation from a gyroscope be used to improve feature matching. To analyze this new approach of camera and gyroscope data fusion, we proceed in two steps. First, we rotationally align the images using rotation information of the gyroscope. And second, we compare the quality of feature matching in the original and rotationally aligned images. Experimental results on a real catadioptric sequence show that gyroscope data permits to sensibly improve the number of inliers according to epipolar geometry.</description><subject>Cameras</subject><subject>Feature extraction</subject><subject>Geometry</subject><subject>Gyroscopes</subject><subject>Lighting</subject><subject>Mirrors</subject><subject>Motion estimation</subject><subject>Noise robustness</subject><subject>Robot sensing systems</subject><subject>Robot vision systems</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtLw0AUhccXWGt_gLiZP5B677xnKcVHsaBI92UyuRNHTBOSVOi_t2I3rs7iO3wcDmM3CHNE8HfLxdv7XAC4ubIGQfoTNvPWoRJKCbTanLKJcBILq6w--8eUP2cTBI2FMhov2dUwfAIIkNpN2Muy6fr2mxrajrxNPFEYdz3xJozxI29rnrc8hjFUue3GPkeem1DTwHfDL6z3fTvEtiNeHTrX7CKFr4Fmx5yy9ePDevFcrF6flov7VZE9jIWPRnhbaqJQOuclSuNLDajRlBZENGgjEFIQ6BSUPhmVDKWYsJSVsUlO2e2fNhPRpusPi_r95niL_AELiVJW</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Bazin, J.-C.</creator><creator>Inso Kweon</creator><creator>Demonceaux, C.</creator><creator>Vasseur, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Improvement of feature matching in catadioptric images using gyroscope data</title><author>Bazin, J.-C. ; Inso Kweon ; Demonceaux, C. ; Vasseur, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9c6297b5eeab88931369b501516b702c617c0e1ea21840b9f64f6efcf1b3d67f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cameras</topic><topic>Feature extraction</topic><topic>Geometry</topic><topic>Gyroscopes</topic><topic>Lighting</topic><topic>Mirrors</topic><topic>Motion estimation</topic><topic>Noise robustness</topic><topic>Robot sensing systems</topic><topic>Robot vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bazin, J.-C.</creatorcontrib><creatorcontrib>Inso Kweon</creatorcontrib><creatorcontrib>Demonceaux, C.</creatorcontrib><creatorcontrib>Vasseur, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bazin, J.-C.</au><au>Inso Kweon</au><au>Demonceaux, C.</au><au>Vasseur, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvement of feature matching in catadioptric images using gyroscope data</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>Most of vision-based algorithms for motion and localization estimation requires matching some interest points in a pair of images. After building feature correspondence, it is possible to estimate camera motion/localization using epipolar geometry. However feature matching is still a challenging problem because of time constraint or image variability for example. In several robotic applications, the camera rotation may be known thanks to a gyroscope or another orientation sensor. Therefore, in this paper, we aim to answer the following question: can the knowledge of rotation from a gyroscope be used to improve feature matching. To analyze this new approach of camera and gyroscope data fusion, we proceed in two steps. First, we rotationally align the images using rotation information of the gyroscope. And second, we compare the quality of feature matching in the original and rotationally aligned images. Experimental results on a real catadioptric sequence show that gyroscope data permits to sensibly improve the number of inliers according to epipolar geometry.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761039</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2008 19th International Conference on Pattern Recognition, 2008, p.1-5 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_4761039 |
source | IEEE Xplore All Conference Series |
subjects | Cameras Feature extraction Geometry Gyroscopes Lighting Mirrors Motion estimation Noise robustness Robot sensing systems Robot vision systems |
title | Improvement of feature matching in catadioptric images using gyroscope data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvement%20of%20feature%20matching%20in%20catadioptric%20images%20using%20gyroscope%20data&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Bazin,%20J.-C.&rft.date=2008-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761039&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&rft_dat=%3Cieee_CHZPO%3E4761039%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9c6297b5eeab88931369b501516b702c617c0e1ea21840b9f64f6efcf1b3d67f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761039&rfr_iscdi=true |