Loading…
Bayesian classification for the Statistical Hough transform
We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Dahyot, R. |
description | We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images. |
doi_str_mv | 10.1109/ICPR.2008.4761109 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4761109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761109</ieee_id><sourcerecordid>4761109</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1339-ba1ca67d6fcefb3cfdf78c526c1139cd96c8636216dded4707e71eaf98c584673</originalsourceid><addsrcrecordid>eNpVkMlOwzAYhM0mEUofAHHxCyT1793iBBG0lSqBWM6V64UapQmK00PfniB64TSa-UZzGIRugFQAxMyW9ctrRQnRFVfyNzlBU6M0cMo5BSXkKSqoZlAqrsTZP8bNOSqACCi5FHCJrnL-IoQSJnSB7h7sIeRkW-wam3OKydkhdS2OXY-HbcBvw-jzMMYNXnT7zy0eetvmEe-u0UW0TQ7To07Qx9Pje70oV8_zZX2_KhMwZsqNBWel8jK6EDfMRR-VdoJKB8CM80Y6LZmkIL0PniuigoJgoxlLmkvFJuj2bzeFENbffdrZ_rA-_sB-AL5ZTTY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian classification for the Statistical Hough transform</title><source>IEEE Xplore All Conference Series</source><creator>Dahyot, R.</creator><creatorcontrib>Dahyot, R.</creatorcontrib><description>We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Bayesian methods ; Computer science ; Discrete transforms ; Educational institutions ; Histograms ; Image segmentation ; Kernel ; Robustness ; Statistics</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dahyot, R.</creatorcontrib><title>Bayesian classification for the Statistical Hough transform</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.</description><subject>Bandwidth</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Discrete transforms</subject><subject>Educational institutions</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Robustness</subject><subject>Statistics</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMlOwzAYhM0mEUofAHHxCyT1793iBBG0lSqBWM6V64UapQmK00PfniB64TSa-UZzGIRugFQAxMyW9ctrRQnRFVfyNzlBU6M0cMo5BSXkKSqoZlAqrsTZP8bNOSqACCi5FHCJrnL-IoQSJnSB7h7sIeRkW-wam3OKydkhdS2OXY-HbcBvw-jzMMYNXnT7zy0eetvmEe-u0UW0TQ7To07Qx9Pje70oV8_zZX2_KhMwZsqNBWel8jK6EDfMRR-VdoJKB8CM80Y6LZmkIL0PniuigoJgoxlLmkvFJuj2bzeFENbffdrZ_rA-_sB-AL5ZTTY</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Dahyot, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Bayesian classification for the Statistical Hough transform</title><author>Dahyot, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1339-ba1ca67d6fcefb3cfdf78c526c1139cd96c8636216dded4707e71eaf98c584673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bandwidth</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Discrete transforms</topic><topic>Educational institutions</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Robustness</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Dahyot, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Internet Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dahyot, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian classification for the Statistical Hough transform</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761109</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2008 19th International Conference on Pattern Recognition, 2008, p.1-4 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_4761109 |
source | IEEE Xplore All Conference Series |
subjects | Bandwidth Bayesian methods Computer science Discrete transforms Educational institutions Histograms Image segmentation Kernel Robustness Statistics |
title | Bayesian classification for the Statistical Hough transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20classification%20for%20the%20Statistical%20Hough%20transform&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Dahyot,%20R.&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761109&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&rft_dat=%3Cieee_CHZPO%3E4761109%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1339-ba1ca67d6fcefb3cfdf78c526c1139cd96c8636216dded4707e71eaf98c584673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761109&rfr_iscdi=true |