Loading…

Bayesian classification for the Statistical Hough transform

We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial...

Full description

Saved in:
Bibliographic Details
Main Author: Dahyot, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Dahyot, R.
description We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.
doi_str_mv 10.1109/ICPR.2008.4761109
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4761109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761109</ieee_id><sourcerecordid>4761109</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1339-ba1ca67d6fcefb3cfdf78c526c1139cd96c8636216dded4707e71eaf98c584673</originalsourceid><addsrcrecordid>eNpVkMlOwzAYhM0mEUofAHHxCyT1793iBBG0lSqBWM6V64UapQmK00PfniB64TSa-UZzGIRugFQAxMyW9ctrRQnRFVfyNzlBU6M0cMo5BSXkKSqoZlAqrsTZP8bNOSqACCi5FHCJrnL-IoQSJnSB7h7sIeRkW-wam3OKydkhdS2OXY-HbcBvw-jzMMYNXnT7zy0eetvmEe-u0UW0TQ7To07Qx9Pje70oV8_zZX2_KhMwZsqNBWel8jK6EDfMRR-VdoJKB8CM80Y6LZmkIL0PniuigoJgoxlLmkvFJuj2bzeFENbffdrZ_rA-_sB-AL5ZTTY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian classification for the Statistical Hough transform</title><source>IEEE Xplore All Conference Series</source><creator>Dahyot, R.</creator><creatorcontrib>Dahyot, R.</creatorcontrib><description>We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Bayesian methods ; Computer science ; Discrete transforms ; Educational institutions ; Histograms ; Image segmentation ; Kernel ; Robustness ; Statistics</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dahyot, R.</creatorcontrib><title>Bayesian classification for the Statistical Hough transform</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.</description><subject>Bandwidth</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>Discrete transforms</subject><subject>Educational institutions</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Robustness</subject><subject>Statistics</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMlOwzAYhM0mEUofAHHxCyT1793iBBG0lSqBWM6V64UapQmK00PfniB64TSa-UZzGIRugFQAxMyW9ctrRQnRFVfyNzlBU6M0cMo5BSXkKSqoZlAqrsTZP8bNOSqACCi5FHCJrnL-IoQSJnSB7h7sIeRkW-wam3OKydkhdS2OXY-HbcBvw-jzMMYNXnT7zy0eetvmEe-u0UW0TQ7To07Qx9Pje70oV8_zZX2_KhMwZsqNBWel8jK6EDfMRR-VdoJKB8CM80Y6LZmkIL0PniuigoJgoxlLmkvFJuj2bzeFENbffdrZ_rA-_sB-AL5ZTTY</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Dahyot, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Bayesian classification for the Statistical Hough transform</title><author>Dahyot, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1339-ba1ca67d6fcefb3cfdf78c526c1139cd96c8636216dded4707e71eaf98c584673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bandwidth</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>Discrete transforms</topic><topic>Educational institutions</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Robustness</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Dahyot, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Internet Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dahyot, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian classification for the Statistical Hough transform</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>We have introduced the statistical Hough transform that extends the standard Hough transform by using a kernel mixture as a robust alternative to the 2 dimensional accumulator histogram. This work develops further this framework by proposing a Bayesian classification scheme to associate the spatial coordinates (x, y) to one particular class defined in the Hough space (¿, ¿). In a first step, we segment the Hough space into meaningful classes. Then using the inverse Radon transform, we backproject the different classes into the image space. We illustrate our approach on a synthetic image and on real images.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761109</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761109
source IEEE Xplore All Conference Series
subjects Bandwidth
Bayesian methods
Computer science
Discrete transforms
Educational institutions
Histograms
Image segmentation
Kernel
Robustness
Statistics
title Bayesian classification for the Statistical Hough transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20classification%20for%20the%20Statistical%20Hough%20transform&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Dahyot,%20R.&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761109&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&rft_dat=%3Cieee_CHZPO%3E4761109%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1339-ba1ca67d6fcefb3cfdf78c526c1139cd96c8636216dded4707e71eaf98c584673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761109&rfr_iscdi=true