Loading…

Contour grouping with shape manifold and distance transform

Object detection in clutter or occlusion is a hard problem in computer vision. We propose an object detection method based on contour grouping. Two stages are included: a novel distance transform is applied to match templates to the test image so that candidates and locations of the object are obtai...

Full description

Saved in:
Bibliographic Details
Main Authors: Zou Qi, Luo Siwei, Huang Yaping, Li Yan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Zou Qi
Luo Siwei
Huang Yaping
Li Yan
description Object detection in clutter or occlusion is a hard problem in computer vision. We propose an object detection method based on contour grouping. Two stages are included: a novel distance transform is applied to match templates to the test image so that candidates and locations of the object are obtained; verification using shape manifold is performed to preclude outliers and identify the prior. We use the prior combined with bottom-up edge information to produce the final grouping result. Our contribution lies in two aspects: one is the novel distance transform saves much searching space; the other is introducing shape manifold in verifying candidates of grouping. Experiments show our method achieves considerable accuracy in occlusion and background clutter. Specially, the only feature used is edge and contour rather than combination of multi features.
doi_str_mv 10.1109/ICPR.2008.4761578
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4761578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761578</ieee_id><sourcerecordid>4761578</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6ede4ca0fd9f82ae5216babb3b29af95028e06ec86a55555aa28b483c4f1df403</originalsourceid><addsrcrecordid>eNpVkMtKw0AUhscbWGsfQNzMCySeM7fM4EpC1UJBke7LSTLTjjQXJini24vYjf_mW3zwLX7G7hByRHAPq_L9IxcANleFQV3YM7ZwhUUllBJYaHPOZsJKzApV6It_TrlLNkPQmCmj8ZrdjOMngACp7Yw9ln039cfEd6k_DrHb8a847fm4p8HzlroY-kPDqWt4E8eJutrzKVE3hj61t-wq0GH0ixPnbPO83JSv2frtZVU-rbPoYMqMb7yqCULjghXktUBTUVXJSjgKToOwHoyvrSH9OyJhK2VlrQI2QYGcs_u_bPTeb4cUW0rf29MN8geTDk07</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Contour grouping with shape manifold and distance transform</title><source>IEEE Xplore All Conference Series</source><creator>Zou Qi ; Luo Siwei ; Huang Yaping ; Li Yan</creator><creatorcontrib>Zou Qi ; Luo Siwei ; Huang Yaping ; Li Yan</creatorcontrib><description>Object detection in clutter or occlusion is a hard problem in computer vision. We propose an object detection method based on contour grouping. Two stages are included: a novel distance transform is applied to match templates to the test image so that candidates and locations of the object are obtained; verification using shape manifold is performed to preclude outliers and identify the prior. We use the prior combined with bottom-up edge information to produce the final grouping result. Our contribution lies in two aspects: one is the novel distance transform saves much searching space; the other is introducing shape manifold in verifying candidates of grouping. Experiments show our method achieves considerable accuracy in occlusion and background clutter. Specially, the only feature used is edge and contour rather than combination of multi features.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761578</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boosting ; Computer vision ; Information technology ; Management training ; Object detection ; Object recognition ; Performance evaluation ; Shape ; Support vector machines ; Testing</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou Qi</creatorcontrib><creatorcontrib>Luo Siwei</creatorcontrib><creatorcontrib>Huang Yaping</creatorcontrib><creatorcontrib>Li Yan</creatorcontrib><title>Contour grouping with shape manifold and distance transform</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Object detection in clutter or occlusion is a hard problem in computer vision. We propose an object detection method based on contour grouping. Two stages are included: a novel distance transform is applied to match templates to the test image so that candidates and locations of the object are obtained; verification using shape manifold is performed to preclude outliers and identify the prior. We use the prior combined with bottom-up edge information to produce the final grouping result. Our contribution lies in two aspects: one is the novel distance transform saves much searching space; the other is introducing shape manifold in verifying candidates of grouping. Experiments show our method achieves considerable accuracy in occlusion and background clutter. Specially, the only feature used is edge and contour rather than combination of multi features.</description><subject>Boosting</subject><subject>Computer vision</subject><subject>Information technology</subject><subject>Management training</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Shape</subject><subject>Support vector machines</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKw0AUhscbWGsfQNzMCySeM7fM4EpC1UJBke7LSTLTjjQXJini24vYjf_mW3zwLX7G7hByRHAPq_L9IxcANleFQV3YM7ZwhUUllBJYaHPOZsJKzApV6It_TrlLNkPQmCmj8ZrdjOMngACp7Yw9ln039cfEd6k_DrHb8a847fm4p8HzlroY-kPDqWt4E8eJutrzKVE3hj61t-wq0GH0ixPnbPO83JSv2frtZVU-rbPoYMqMb7yqCULjghXktUBTUVXJSjgKToOwHoyvrSH9OyJhK2VlrQI2QYGcs_u_bPTeb4cUW0rf29MN8geTDk07</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Zou Qi</creator><creator>Luo Siwei</creator><creator>Huang Yaping</creator><creator>Li Yan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Contour grouping with shape manifold and distance transform</title><author>Zou Qi ; Luo Siwei ; Huang Yaping ; Li Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6ede4ca0fd9f82ae5216babb3b29af95028e06ec86a55555aa28b483c4f1df403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boosting</topic><topic>Computer vision</topic><topic>Information technology</topic><topic>Management training</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Shape</topic><topic>Support vector machines</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zou Qi</creatorcontrib><creatorcontrib>Luo Siwei</creatorcontrib><creatorcontrib>Huang Yaping</creatorcontrib><creatorcontrib>Li Yan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou Qi</au><au>Luo Siwei</au><au>Huang Yaping</au><au>Li Yan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Contour grouping with shape manifold and distance transform</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>Object detection in clutter or occlusion is a hard problem in computer vision. We propose an object detection method based on contour grouping. Two stages are included: a novel distance transform is applied to match templates to the test image so that candidates and locations of the object are obtained; verification using shape manifold is performed to preclude outliers and identify the prior. We use the prior combined with bottom-up edge information to produce the final grouping result. Our contribution lies in two aspects: one is the novel distance transform saves much searching space; the other is introducing shape manifold in verifying candidates of grouping. Experiments show our method achieves considerable accuracy in occlusion and background clutter. Specially, the only feature used is edge and contour rather than combination of multi features.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761578</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761578
source IEEE Xplore All Conference Series
subjects Boosting
Computer vision
Information technology
Management training
Object detection
Object recognition
Performance evaluation
Shape
Support vector machines
Testing
title Contour grouping with shape manifold and distance transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Contour%20grouping%20with%20shape%20manifold%20and%20distance%20transform&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Zou%20Qi&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761578&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&rft_dat=%3Cieee_CHZPO%3E4761578%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-6ede4ca0fd9f82ae5216babb3b29af95028e06ec86a55555aa28b483c4f1df403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761578&rfr_iscdi=true