Loading…

Semi-supervised discriminant analysis based on UDP regularization

We propose a semi-supervised learning algorithm for discriminant analysis, which uses the geometric structure of both labeled and unlabeled samples and perform a manifold regularization on LDA. The labeled data points provide labeling information and the unlabeled data points provide extra geometric...

Full description

Saved in:
Bibliographic Details
Main Authors: Huining Qiu, Jianhuang Lai, Jian Huang, Yu Chen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Huining Qiu
Jianhuang Lai
Jian Huang
Yu Chen
description We propose a semi-supervised learning algorithm for discriminant analysis, which uses the geometric structure of both labeled and unlabeled samples and perform a manifold regularization on LDA. The labeled data points provide labeling information and the unlabeled data points provide extra geometric structure information of the data, then we learn a labeling function which is as smooth as possible on the data manifold. Experiments on several face databases show the effectiveness of the algorithm.
doi_str_mv 10.1109/ICPR.2008.4761802
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761802</ieee_id><sourcerecordid>4761802</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3e64cc5c6acbe5134d787c847fd7d46dccddd88bb8e52a575b387fd22d6ac18b3</originalsourceid><addsrcrecordid>eNpVkMtKw0AYhccbWGsfQNzkBSbOP9c_yxJvhYJF67rMrTKSpiWTCvXpjdiNq7P4OB-HQ8gNsBKAVXezevFacsawlEYDMn5CJpVBkFxKDkbpUzLiKIAaadTZPyarczICpoBKreCSXOX8yRhnQuGITN_iJtG838XuK-UYipCy79ImtbbtC9va5pBTLpz9Zdu2eL9fFF382De2S9-2T9v2mlysbZPj5Jhjsnx8WNbPdP7yNKunc5oq1lMRtfReeW29iwqEDAaNR2nWwQSpg_chBETnMCpulVFO4MA4D0MD0Ikxuf3TphjjajdMtN1hdTxD_ADADk_l</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semi-supervised discriminant analysis based on UDP regularization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huining Qiu ; Jianhuang Lai ; Jian Huang ; Yu Chen</creator><creatorcontrib>Huining Qiu ; Jianhuang Lai ; Jian Huang ; Yu Chen</creatorcontrib><description>We propose a semi-supervised learning algorithm for discriminant analysis, which uses the geometric structure of both labeled and unlabeled samples and perform a manifold regularization on LDA. The labeled data points provide labeling information and the unlabeled data points provide extra geometric structure information of the data, then we learn a labeling function which is as smooth as possible on the data manifold. Experiments on several face databases show the effectiveness of the algorithm.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761802</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Face ; Feature extraction ; Image databases ; Labeling ; Linear discriminant analysis ; Pattern recognition ; Performance analysis ; Semisupervised learning ; Sun</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huining Qiu</creatorcontrib><creatorcontrib>Jianhuang Lai</creatorcontrib><creatorcontrib>Jian Huang</creatorcontrib><creatorcontrib>Yu Chen</creatorcontrib><title>Semi-supervised discriminant analysis based on UDP regularization</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>We propose a semi-supervised learning algorithm for discriminant analysis, which uses the geometric structure of both labeled and unlabeled samples and perform a manifold regularization on LDA. The labeled data points provide labeling information and the unlabeled data points provide extra geometric structure information of the data, then we learn a labeling function which is as smooth as possible on the data manifold. Experiments on several face databases show the effectiveness of the algorithm.</description><subject>Algorithm design and analysis</subject><subject>Face</subject><subject>Feature extraction</subject><subject>Image databases</subject><subject>Labeling</subject><subject>Linear discriminant analysis</subject><subject>Pattern recognition</subject><subject>Performance analysis</subject><subject>Semisupervised learning</subject><subject>Sun</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKw0AYhccbWGsfQNzkBSbOP9c_yxJvhYJF67rMrTKSpiWTCvXpjdiNq7P4OB-HQ8gNsBKAVXezevFacsawlEYDMn5CJpVBkFxKDkbpUzLiKIAaadTZPyarczICpoBKreCSXOX8yRhnQuGITN_iJtG838XuK-UYipCy79ImtbbtC9va5pBTLpz9Zdu2eL9fFF382De2S9-2T9v2mlysbZPj5Jhjsnx8WNbPdP7yNKunc5oq1lMRtfReeW29iwqEDAaNR2nWwQSpg_chBETnMCpulVFO4MA4D0MD0Ikxuf3TphjjajdMtN1hdTxD_ADADk_l</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Huining Qiu</creator><creator>Jianhuang Lai</creator><creator>Jian Huang</creator><creator>Yu Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Semi-supervised discriminant analysis based on UDP regularization</title><author>Huining Qiu ; Jianhuang Lai ; Jian Huang ; Yu Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3e64cc5c6acbe5134d787c847fd7d46dccddd88bb8e52a575b387fd22d6ac18b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Face</topic><topic>Feature extraction</topic><topic>Image databases</topic><topic>Labeling</topic><topic>Linear discriminant analysis</topic><topic>Pattern recognition</topic><topic>Performance analysis</topic><topic>Semisupervised learning</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Huining Qiu</creatorcontrib><creatorcontrib>Jianhuang Lai</creatorcontrib><creatorcontrib>Jian Huang</creatorcontrib><creatorcontrib>Yu Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huining Qiu</au><au>Jianhuang Lai</au><au>Jian Huang</au><au>Yu Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-supervised discriminant analysis based on UDP regularization</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>We propose a semi-supervised learning algorithm for discriminant analysis, which uses the geometric structure of both labeled and unlabeled samples and perform a manifold regularization on LDA. The labeled data points provide labeling information and the unlabeled data points provide extra geometric structure information of the data, then we learn a labeling function which is as smooth as possible on the data manifold. Experiments on several face databases show the effectiveness of the algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761802</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761802
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Face
Feature extraction
Image databases
Labeling
Linear discriminant analysis
Pattern recognition
Performance analysis
Semisupervised learning
Sun
title Semi-supervised discriminant analysis based on UDP regularization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-supervised%20discriminant%20analysis%20based%20on%20UDP%20regularization&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Huining%20Qiu&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761802&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&rft_dat=%3Cieee_6IE%3E4761802%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3e64cc5c6acbe5134d787c847fd7d46dccddd88bb8e52a575b387fd22d6ac18b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761802&rfr_iscdi=true