Loading…

The First Stage in Two-Stage Template Matching

This paper formulates the problem encountered in the first stage of two-stage, binary template matching as a set of hypotheses to be tested, including a hypothesis of ``no object.'' Two new statistics R and G are proposed, based on a likelihood ratio, and are compared to the sum of absolut...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 1985-11, Vol.PAMI-7 (6), p.700-707
Main Authors: Li, Xiaobo, Dubes, Richard C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3
cites cdi_FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3
container_end_page 707
container_issue 6
container_start_page 700
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume PAMI-7
creator Li, Xiaobo
Dubes, Richard C.
description This paper formulates the problem encountered in the first stage of two-stage, binary template matching as a set of hypotheses to be tested, including a hypothesis of ``no object.'' Two new statistics R and G are proposed, based on a likelihood ratio, and are compared to the sum of absolute differences and a correlation measure by analytical approximations and Monte Carlo experiments. Statistical power and a measure of sensitivity to the true location of the object are the criteria. Parameters are the numbers of 1's in object and image, subtemplate size, and parameters reflecting intensity distortion between template and object. One of the proposed statistics R is much more computationally intensive than the other G. Although R is more powerful than G and the other statistics, G is generally more sensitive to the true object location. Statistic G is also more powerful than the sum of absolute differences and correlation. All statistics are robust to incomplete knowledge of distortion parameters. Experiments on Landsat images confirm the sensitivity of G and recommend it for application in the first stage.
doi_str_mv 10.1109/TPAMI.1985.4767726
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4767726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4767726</ieee_id><sourcerecordid>885563688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMobk5fQEF6IXjVmqRpcno5htPBhoL1OqTZyVZpu9l0iG_vZrtdHQ7n-_8DHyG3jEaM0fQpex8vZhFLIYmEkkpxeUaGLI3TME7i9JwMKZM8BOAwIFfef1HKRELjSzLgDGQaUxiSKFtjMC0a3wYfrVlhUNRB9rMJuyXDaluaFoOFae26qFfX5MKZ0uNNP0fkc_qcTV7D-dvLbDKeh5ZL0YYIkCKKJcPccmUYF8zlSgpLBaB1kEvGKSxVIpiQeW6cSLgxMnGgVC6di0fksevdNpvvHfpWV4W3WJamxs3Oa4AkkbEE2JO8I22z8b5Bp7dNUZnmVzOqD5r0vyZ90KR7TfvQfV-_yytcniJHL3vgoQeMt6Z0jalt4U8cSM7T-IDddViBiKfr8csfNd53IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885563688</pqid></control><display><type>article</type><title>The First Stage in Two-Stage Template Matching</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Xiaobo ; Dubes, Richard C.</creator><creatorcontrib>Li, Xiaobo ; Dubes, Richard C.</creatorcontrib><description>This paper formulates the problem encountered in the first stage of two-stage, binary template matching as a set of hypotheses to be tested, including a hypothesis of ``no object.'' Two new statistics R and G are proposed, based on a likelihood ratio, and are compared to the sum of absolute differences and a correlation measure by analytical approximations and Monte Carlo experiments. Statistical power and a measure of sensitivity to the true location of the object are the criteria. Parameters are the numbers of 1's in object and image, subtemplate size, and parameters reflecting intensity distortion between template and object. One of the proposed statistics R is much more computationally intensive than the other G. Although R is more powerful than G and the other statistics, G is generally more sensitive to the true object location. Statistic G is also more powerful than the sum of absolute differences and correlation. All statistics are robust to incomplete knowledge of distortion parameters. Experiments on Landsat images confirm the sensitivity of G and recommend it for application in the first stage.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.1985.4767726</identifier><identifier>PMID: 21869308</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Application software ; Applied sciences ; Artificial intelligence ; Computer errors ; Computer science ; Computer science; control theory; systems ; Distortion measurement ; Exact sciences and technology ; Image registration ; Landsat imagery ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Remote sensing ; Satellites ; similarity measure ; Statistical analysis ; Statistics ; template matching ; Testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1985-11, Vol.PAMI-7 (6), p.700-707</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3</citedby><cites>FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4767726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8622938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21869308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Dubes, Richard C.</creatorcontrib><title>The First Stage in Two-Stage Template Matching</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper formulates the problem encountered in the first stage of two-stage, binary template matching as a set of hypotheses to be tested, including a hypothesis of ``no object.'' Two new statistics R and G are proposed, based on a likelihood ratio, and are compared to the sum of absolute differences and a correlation measure by analytical approximations and Monte Carlo experiments. Statistical power and a measure of sensitivity to the true location of the object are the criteria. Parameters are the numbers of 1's in object and image, subtemplate size, and parameters reflecting intensity distortion between template and object. One of the proposed statistics R is much more computationally intensive than the other G. Although R is more powerful than G and the other statistics, G is generally more sensitive to the true object location. Statistic G is also more powerful than the sum of absolute differences and correlation. All statistics are robust to incomplete knowledge of distortion parameters. Experiments on Landsat images confirm the sensitivity of G and recommend it for application in the first stage.</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer errors</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Image registration</subject><subject>Landsat imagery</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>similarity measure</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>template matching</subject><subject>Testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMobk5fQEF6IXjVmqRpcno5htPBhoL1OqTZyVZpu9l0iG_vZrtdHQ7n-_8DHyG3jEaM0fQpex8vZhFLIYmEkkpxeUaGLI3TME7i9JwMKZM8BOAwIFfef1HKRELjSzLgDGQaUxiSKFtjMC0a3wYfrVlhUNRB9rMJuyXDaluaFoOFae26qFfX5MKZ0uNNP0fkc_qcTV7D-dvLbDKeh5ZL0YYIkCKKJcPccmUYF8zlSgpLBaB1kEvGKSxVIpiQeW6cSLgxMnGgVC6di0fksevdNpvvHfpWV4W3WJamxs3Oa4AkkbEE2JO8I22z8b5Bp7dNUZnmVzOqD5r0vyZ90KR7TfvQfV-_yytcniJHL3vgoQeMt6Z0jalt4U8cSM7T-IDddViBiKfr8csfNd53IQ</recordid><startdate>198511</startdate><enddate>198511</enddate><creator>Li, Xiaobo</creator><creator>Dubes, Richard C.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198511</creationdate><title>The First Stage in Two-Stage Template Matching</title><author>Li, Xiaobo ; Dubes, Richard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer errors</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Image registration</topic><topic>Landsat imagery</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>similarity measure</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>template matching</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Dubes, Richard C.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaobo</au><au>Dubes, Richard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The First Stage in Two-Stage Template Matching</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>1985-11</date><risdate>1985</risdate><volume>PAMI-7</volume><issue>6</issue><spage>700</spage><epage>707</epage><pages>700-707</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>This paper formulates the problem encountered in the first stage of two-stage, binary template matching as a set of hypotheses to be tested, including a hypothesis of ``no object.'' Two new statistics R and G are proposed, based on a likelihood ratio, and are compared to the sum of absolute differences and a correlation measure by analytical approximations and Monte Carlo experiments. Statistical power and a measure of sensitivity to the true location of the object are the criteria. Parameters are the numbers of 1's in object and image, subtemplate size, and parameters reflecting intensity distortion between template and object. One of the proposed statistics R is much more computationally intensive than the other G. Although R is more powerful than G and the other statistics, G is generally more sensitive to the true object location. Statistic G is also more powerful than the sum of absolute differences and correlation. All statistics are robust to incomplete knowledge of distortion parameters. Experiments on Landsat images confirm the sensitivity of G and recommend it for application in the first stage.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>21869308</pmid><doi>10.1109/TPAMI.1985.4767726</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1985-11, Vol.PAMI-7 (6), p.700-707
issn 0162-8828
1939-3539
language eng
recordid cdi_ieee_primary_4767726
source IEEE Electronic Library (IEL) Journals
subjects Application software
Applied sciences
Artificial intelligence
Computer errors
Computer science
Computer science
control theory
systems
Distortion measurement
Exact sciences and technology
Image registration
Landsat imagery
Pattern recognition. Digital image processing. Computational geometry
Pixel
Remote sensing
Satellites
similarity measure
Statistical analysis
Statistics
template matching
Testing
title The First Stage in Two-Stage Template Matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20First%20Stage%20in%20Two-Stage%20Template%20Matching&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Li,%20Xiaobo&rft.date=1985-11&rft.volume=PAMI-7&rft.issue=6&rft.spage=700&rft.epage=707&rft.pages=700-707&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.1985.4767726&rft_dat=%3Cproquest_ieee_%3E885563688%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-e889ee4d1ebc27a1241fb764c048ecf8b61208d754146bbaf452aa65f877b6ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885563688&rft_id=info:pmid/21869308&rft_ieee_id=4767726&rfr_iscdi=true