Loading…

Exponential Stability of Delayed Neural Networks with Impulses

This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.

Saved in:
Bibliographic Details
Main Authors: Jin-Xiang Yang, Shou-Ming Zhong, Jian-Cheng Song
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 246
container_issue
container_start_page 244
container_title
container_volume
creator Jin-Xiang Yang
Shou-Ming Zhong
Jian-Cheng Song
description This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.
doi_str_mv 10.1109/ICACIA.2008.4770015
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4770015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4770015</ieee_id><sourcerecordid>4770015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ccd5560629bcf3972eda355e1eed2d4dcf3c3fc4a858276dc8c5b06ca6b822553</originalsourceid><addsrcrecordid>eNpFT8tOwzAQNEKVoKVf0It_IMFev5ILUhVKqVSVA3CuHHsjDGkTJa5K_p4gKrGXmd0ZjWYJWXCWcs7y-02xLDbLFBjLUmkMY1xdkSmXIKWQoOH6fzFsQqa_xpwzAHZD5n3_ycaRSkgOt-Rh9d02RzzGYGv6Gm0Z6hAH2lT0EWs7oKc7PHWjtsN4brqvnp5D_KCbQ3uqe-zvyKSyI5lfcEben1ZvxXOyfVmPNbdJ4EbFxDmvlGYa8tJVIjeA3gqlkCN68NKPRycqJ22mMjDau8ypkmlndZkBKCVmZPGXGxBx33bhYLthf3le_ABVqkwy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exponential Stability of Delayed Neural Networks with Impulses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Xiang Yang ; Shou-Ming Zhong ; Jian-Cheng Song</creator><creatorcontrib>Jin-Xiang Yang ; Shou-Ming Zhong ; Jian-Cheng Song</creatorcontrib><description>This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.</description><identifier>ISBN: 1424434270</identifier><identifier>ISBN: 9781424434251</identifier><identifier>ISBN: 1424434254</identifier><identifier>ISBN: 9781424434275</identifier><identifier>EISBN: 1424434262</identifier><identifier>EISBN: 9781424434268</identifier><identifier>DOI: 10.1109/ICACIA.2008.4770015</identifier><identifier>LCCN: 2008910220</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer science ; Delay effects ; Differential equations ; Educational institutions ; Exponential stability ; Hopfield neural networks ; impulsive ; Neural networks ; Recurrent neural networks ; Stability criteria ; Sufficient conditions</subject><ispartof>2008 International Conference on Apperceiving Computing and Intelligence Analysis, 2008, p.244-246</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4770015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4770015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Xiang Yang</creatorcontrib><creatorcontrib>Shou-Ming Zhong</creatorcontrib><creatorcontrib>Jian-Cheng Song</creatorcontrib><title>Exponential Stability of Delayed Neural Networks with Impulses</title><title>2008 International Conference on Apperceiving Computing and Intelligence Analysis</title><addtitle>ICACIA</addtitle><description>This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.</description><subject>Artificial neural networks</subject><subject>Computer science</subject><subject>Delay effects</subject><subject>Differential equations</subject><subject>Educational institutions</subject><subject>Exponential stability</subject><subject>Hopfield neural networks</subject><subject>impulsive</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Stability criteria</subject><subject>Sufficient conditions</subject><isbn>1424434270</isbn><isbn>9781424434251</isbn><isbn>1424434254</isbn><isbn>9781424434275</isbn><isbn>1424434262</isbn><isbn>9781424434268</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFT8tOwzAQNEKVoKVf0It_IMFev5ILUhVKqVSVA3CuHHsjDGkTJa5K_p4gKrGXmd0ZjWYJWXCWcs7y-02xLDbLFBjLUmkMY1xdkSmXIKWQoOH6fzFsQqa_xpwzAHZD5n3_ycaRSkgOt-Rh9d02RzzGYGv6Gm0Z6hAH2lT0EWs7oKc7PHWjtsN4brqvnp5D_KCbQ3uqe-zvyKSyI5lfcEben1ZvxXOyfVmPNbdJ4EbFxDmvlGYa8tJVIjeA3gqlkCN68NKPRycqJ22mMjDau8ypkmlndZkBKCVmZPGXGxBx33bhYLthf3le_ABVqkwy</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Jin-Xiang Yang</creator><creator>Shou-Ming Zhong</creator><creator>Jian-Cheng Song</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Exponential Stability of Delayed Neural Networks with Impulses</title><author>Jin-Xiang Yang ; Shou-Ming Zhong ; Jian-Cheng Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ccd5560629bcf3972eda355e1eed2d4dcf3c3fc4a858276dc8c5b06ca6b822553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Computer science</topic><topic>Delay effects</topic><topic>Differential equations</topic><topic>Educational institutions</topic><topic>Exponential stability</topic><topic>Hopfield neural networks</topic><topic>impulsive</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Stability criteria</topic><topic>Sufficient conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Xiang Yang</creatorcontrib><creatorcontrib>Shou-Ming Zhong</creatorcontrib><creatorcontrib>Jian-Cheng Song</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Xiang Yang</au><au>Shou-Ming Zhong</au><au>Jian-Cheng Song</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exponential Stability of Delayed Neural Networks with Impulses</atitle><btitle>2008 International Conference on Apperceiving Computing and Intelligence Analysis</btitle><stitle>ICACIA</stitle><date>2008-12</date><risdate>2008</risdate><spage>244</spage><epage>246</epage><pages>244-246</pages><isbn>1424434270</isbn><isbn>9781424434251</isbn><isbn>1424434254</isbn><isbn>9781424434275</isbn><eisbn>1424434262</eisbn><eisbn>9781424434268</eisbn><abstract>This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.</abstract><pub>IEEE</pub><doi>10.1109/ICACIA.2008.4770015</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424434270
ispartof 2008 International Conference on Apperceiving Computing and Intelligence Analysis, 2008, p.244-246
issn
language eng
recordid cdi_ieee_primary_4770015
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computer science
Delay effects
Differential equations
Educational institutions
Exponential stability
Hopfield neural networks
impulsive
Neural networks
Recurrent neural networks
Stability criteria
Sufficient conditions
title Exponential Stability of Delayed Neural Networks with Impulses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exponential%20Stability%20of%20Delayed%20Neural%20Networks%20with%20Impulses&rft.btitle=2008%20International%20Conference%20on%20Apperceiving%20Computing%20and%20Intelligence%20Analysis&rft.au=Jin-Xiang%20Yang&rft.date=2008-12&rft.spage=244&rft.epage=246&rft.pages=244-246&rft.isbn=1424434270&rft.isbn_list=9781424434251&rft.isbn_list=1424434254&rft.isbn_list=9781424434275&rft_id=info:doi/10.1109/ICACIA.2008.4770015&rft.eisbn=1424434262&rft.eisbn_list=9781424434268&rft_dat=%3Cieee_6IE%3E4770015%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ccd5560629bcf3972eda355e1eed2d4dcf3c3fc4a858276dc8c5b06ca6b822553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4770015&rfr_iscdi=true