Loading…
Exponential Stability of Delayed Neural Networks with Impulses
This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 246 |
container_issue | |
container_start_page | 244 |
container_title | |
container_volume | |
creator | Jin-Xiang Yang Shou-Ming Zhong Jian-Cheng Song |
description | This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived. |
doi_str_mv | 10.1109/ICACIA.2008.4770015 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4770015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4770015</ieee_id><sourcerecordid>4770015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ccd5560629bcf3972eda355e1eed2d4dcf3c3fc4a858276dc8c5b06ca6b822553</originalsourceid><addsrcrecordid>eNpFT8tOwzAQNEKVoKVf0It_IMFev5ILUhVKqVSVA3CuHHsjDGkTJa5K_p4gKrGXmd0ZjWYJWXCWcs7y-02xLDbLFBjLUmkMY1xdkSmXIKWQoOH6fzFsQqa_xpwzAHZD5n3_ycaRSkgOt-Rh9d02RzzGYGv6Gm0Z6hAH2lT0EWs7oKc7PHWjtsN4brqvnp5D_KCbQ3uqe-zvyKSyI5lfcEben1ZvxXOyfVmPNbdJ4EbFxDmvlGYa8tJVIjeA3gqlkCN68NKPRycqJ22mMjDau8ypkmlndZkBKCVmZPGXGxBx33bhYLthf3le_ABVqkwy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exponential Stability of Delayed Neural Networks with Impulses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Xiang Yang ; Shou-Ming Zhong ; Jian-Cheng Song</creator><creatorcontrib>Jin-Xiang Yang ; Shou-Ming Zhong ; Jian-Cheng Song</creatorcontrib><description>This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.</description><identifier>ISBN: 1424434270</identifier><identifier>ISBN: 9781424434251</identifier><identifier>ISBN: 1424434254</identifier><identifier>ISBN: 9781424434275</identifier><identifier>EISBN: 1424434262</identifier><identifier>EISBN: 9781424434268</identifier><identifier>DOI: 10.1109/ICACIA.2008.4770015</identifier><identifier>LCCN: 2008910220</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer science ; Delay effects ; Differential equations ; Educational institutions ; Exponential stability ; Hopfield neural networks ; impulsive ; Neural networks ; Recurrent neural networks ; Stability criteria ; Sufficient conditions</subject><ispartof>2008 International Conference on Apperceiving Computing and Intelligence Analysis, 2008, p.244-246</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4770015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4770015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Xiang Yang</creatorcontrib><creatorcontrib>Shou-Ming Zhong</creatorcontrib><creatorcontrib>Jian-Cheng Song</creatorcontrib><title>Exponential Stability of Delayed Neural Networks with Impulses</title><title>2008 International Conference on Apperceiving Computing and Intelligence Analysis</title><addtitle>ICACIA</addtitle><description>This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.</description><subject>Artificial neural networks</subject><subject>Computer science</subject><subject>Delay effects</subject><subject>Differential equations</subject><subject>Educational institutions</subject><subject>Exponential stability</subject><subject>Hopfield neural networks</subject><subject>impulsive</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Stability criteria</subject><subject>Sufficient conditions</subject><isbn>1424434270</isbn><isbn>9781424434251</isbn><isbn>1424434254</isbn><isbn>9781424434275</isbn><isbn>1424434262</isbn><isbn>9781424434268</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFT8tOwzAQNEKVoKVf0It_IMFev5ILUhVKqVSVA3CuHHsjDGkTJa5K_p4gKrGXmd0ZjWYJWXCWcs7y-02xLDbLFBjLUmkMY1xdkSmXIKWQoOH6fzFsQqa_xpwzAHZD5n3_ycaRSkgOt-Rh9d02RzzGYGv6Gm0Z6hAH2lT0EWs7oKc7PHWjtsN4brqvnp5D_KCbQ3uqe-zvyKSyI5lfcEben1ZvxXOyfVmPNbdJ4EbFxDmvlGYa8tJVIjeA3gqlkCN68NKPRycqJ22mMjDau8ypkmlndZkBKCVmZPGXGxBx33bhYLthf3le_ABVqkwy</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Jin-Xiang Yang</creator><creator>Shou-Ming Zhong</creator><creator>Jian-Cheng Song</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Exponential Stability of Delayed Neural Networks with Impulses</title><author>Jin-Xiang Yang ; Shou-Ming Zhong ; Jian-Cheng Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ccd5560629bcf3972eda355e1eed2d4dcf3c3fc4a858276dc8c5b06ca6b822553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Computer science</topic><topic>Delay effects</topic><topic>Differential equations</topic><topic>Educational institutions</topic><topic>Exponential stability</topic><topic>Hopfield neural networks</topic><topic>impulsive</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Stability criteria</topic><topic>Sufficient conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Xiang Yang</creatorcontrib><creatorcontrib>Shou-Ming Zhong</creatorcontrib><creatorcontrib>Jian-Cheng Song</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Xiang Yang</au><au>Shou-Ming Zhong</au><au>Jian-Cheng Song</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exponential Stability of Delayed Neural Networks with Impulses</atitle><btitle>2008 International Conference on Apperceiving Computing and Intelligence Analysis</btitle><stitle>ICACIA</stitle><date>2008-12</date><risdate>2008</risdate><spage>244</spage><epage>246</epage><pages>244-246</pages><isbn>1424434270</isbn><isbn>9781424434251</isbn><isbn>1424434254</isbn><isbn>9781424434275</isbn><eisbn>1424434262</eisbn><eisbn>9781424434268</eisbn><abstract>This paper investigates the stability of a class of delayed neural networks with impulses. By means of Lyapunov direct method, the new sufficient conditions for exponential stability of the systems are derived.</abstract><pub>IEEE</pub><doi>10.1109/ICACIA.2008.4770015</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424434270 |
ispartof | 2008 International Conference on Apperceiving Computing and Intelligence Analysis, 2008, p.244-246 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4770015 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Computer science Delay effects Differential equations Educational institutions Exponential stability Hopfield neural networks impulsive Neural networks Recurrent neural networks Stability criteria Sufficient conditions |
title | Exponential Stability of Delayed Neural Networks with Impulses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exponential%20Stability%20of%20Delayed%20Neural%20Networks%20with%20Impulses&rft.btitle=2008%20International%20Conference%20on%20Apperceiving%20Computing%20and%20Intelligence%20Analysis&rft.au=Jin-Xiang%20Yang&rft.date=2008-12&rft.spage=244&rft.epage=246&rft.pages=244-246&rft.isbn=1424434270&rft.isbn_list=9781424434251&rft.isbn_list=1424434254&rft.isbn_list=9781424434275&rft_id=info:doi/10.1109/ICACIA.2008.4770015&rft.eisbn=1424434262&rft.eisbn_list=9781424434268&rft_dat=%3Cieee_6IE%3E4770015%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ccd5560629bcf3972eda355e1eed2d4dcf3c3fc4a858276dc8c5b06ca6b822553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4770015&rfr_iscdi=true |