Loading…

Automatic computer aided diagnosis tool using component-based SVM

Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPE...

Full description

Saved in:
Bibliographic Details
Main Authors: Gorriz, J. M., Ramirez, J., Lassl, A., Salas-Gonzalez, D., Lang, E. W., Puntonet, C. G., Alvarez, I., Lopez, M., Gomez-Rio, M.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3
cites
container_end_page 4395
container_issue
container_start_page 4392
container_title
container_volume
creator Gorriz, J. M.
Ramirez, J.
Lassl, A.
Salas-Gonzalez, D.
Lang, E. W.
Puntonet, C. G.
Alvarez, I.
Lopez, M.
Gomez-Rio, M.
description Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.
doi_str_mv 10.1109/NSSMIC.2008.4774255
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4774255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4774255</ieee_id><sourcerecordid>4774255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3</originalsourceid><addsrcrecordid>eNpFkMtqwzAURNUXNEn7Bdn4B-TqyleStTSmj0DSLtx2G2RJDiqxHSx70b-vaQNdDcwchmEIWQNLAZh-eK2q3aZMOWN5ikohF-KCLAE5Ilcg2CVZcKEUZTnXV_8B8muygNmkmRR4S5YxfjHGWYa4IEUxjX1rxmAT27enafRDYoLzLnHBHLo-hpiMfX9Mphi6wy_Td74baW3iDFWfuzty05hj9PdnXZGPp8f38oVu3543ZbGlFpCNtPHK1QI41kwYDlJnuXPaewALUhmHUNtMNkLmUnEwGuexQnudWyNrED5bkfVfb_De709DaM3wvT__kP0AqktNdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic computer aided diagnosis tool using component-based SVM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gorriz, J. M. ; Ramirez, J. ; Lassl, A. ; Salas-Gonzalez, D. ; Lang, E. W. ; Puntonet, C. G. ; Alvarez, I. ; Lopez, M. ; Gomez-Rio, M.</creator><creatorcontrib>Gorriz, J. M. ; Ramirez, J. ; Lassl, A. ; Salas-Gonzalez, D. ; Lang, E. W. ; Puntonet, C. G. ; Alvarez, I. ; Lopez, M. ; Gomez-Rio, M.</creatorcontrib><description>Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 1424427142</identifier><identifier>ISBN: 9781424427147</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 1424427150</identifier><identifier>EISBN: 9781424427154</identifier><identifier>DOI: 10.1109/NSSMIC.2008.4774255</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alzheimer's disease ; Brain ; Computed tomography ; Computer aided diagnosis ; Computer errors ; Coronary arteriosclerosis ; Dementia ; Support vector machine classification ; Support vector machines ; Voting</subject><ispartof>2008 IEEE Nuclear Science Symposium Conference Record, 2008, p.4392-4395</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4774255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4774255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorriz, J. M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Lassl, A.</creatorcontrib><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Lang, E. W.</creatorcontrib><creatorcontrib>Puntonet, C. G.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><title>Automatic computer aided diagnosis tool using component-based SVM</title><title>2008 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Computed tomography</subject><subject>Computer aided diagnosis</subject><subject>Computer errors</subject><subject>Coronary arteriosclerosis</subject><subject>Dementia</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Voting</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>1424427142</isbn><isbn>9781424427147</isbn><isbn>1424427150</isbn><isbn>9781424427154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtqwzAURNUXNEn7Bdn4B-TqyleStTSmj0DSLtx2G2RJDiqxHSx70b-vaQNdDcwchmEIWQNLAZh-eK2q3aZMOWN5ikohF-KCLAE5Ilcg2CVZcKEUZTnXV_8B8muygNmkmRR4S5YxfjHGWYa4IEUxjX1rxmAT27enafRDYoLzLnHBHLo-hpiMfX9Mphi6wy_Td74baW3iDFWfuzty05hj9PdnXZGPp8f38oVu3543ZbGlFpCNtPHK1QI41kwYDlJnuXPaewALUhmHUNtMNkLmUnEwGuexQnudWyNrED5bkfVfb_De709DaM3wvT__kP0AqktNdQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Gorriz, J. M.</creator><creator>Ramirez, J.</creator><creator>Lassl, A.</creator><creator>Salas-Gonzalez, D.</creator><creator>Lang, E. W.</creator><creator>Puntonet, C. G.</creator><creator>Alvarez, I.</creator><creator>Lopez, M.</creator><creator>Gomez-Rio, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>Automatic computer aided diagnosis tool using component-based SVM</title><author>Gorriz, J. M. ; Ramirez, J. ; Lassl, A. ; Salas-Gonzalez, D. ; Lang, E. W. ; Puntonet, C. G. ; Alvarez, I. ; Lopez, M. ; Gomez-Rio, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Computed tomography</topic><topic>Computer aided diagnosis</topic><topic>Computer errors</topic><topic>Coronary arteriosclerosis</topic><topic>Dementia</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorriz, J. M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Lassl, A.</creatorcontrib><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Lang, E. W.</creatorcontrib><creatorcontrib>Puntonet, C. G.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorriz, J. M.</au><au>Ramirez, J.</au><au>Lassl, A.</au><au>Salas-Gonzalez, D.</au><au>Lang, E. W.</au><au>Puntonet, C. G.</au><au>Alvarez, I.</au><au>Lopez, M.</au><au>Gomez-Rio, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic computer aided diagnosis tool using component-based SVM</atitle><btitle>2008 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>2008-10</date><risdate>2008</risdate><spage>4392</spage><epage>4395</epage><pages>4392-4395</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>1424427142</isbn><isbn>9781424427147</isbn><eisbn>1424427150</eisbn><eisbn>9781424427154</eisbn><abstract>Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2008.4774255</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof 2008 IEEE Nuclear Science Symposium Conference Record, 2008, p.4392-4395
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_4774255
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Alzheimer's disease
Brain
Computed tomography
Computer aided diagnosis
Computer errors
Coronary arteriosclerosis
Dementia
Support vector machine classification
Support vector machines
Voting
title Automatic computer aided diagnosis tool using component-based SVM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20computer%20aided%20diagnosis%20tool%20using%20component-based%20SVM&rft.btitle=2008%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Gorriz,%20J.%20M.&rft.date=2008-10&rft.spage=4392&rft.epage=4395&rft.pages=4392-4395&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=1424427142&rft.isbn_list=9781424427147&rft_id=info:doi/10.1109/NSSMIC.2008.4774255&rft.eisbn=1424427150&rft.eisbn_list=9781424427154&rft_dat=%3Cieee_6IE%3E4774255%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4774255&rfr_iscdi=true