Loading…
Automatic computer aided diagnosis tool using component-based SVM
Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPE...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3 |
---|---|
cites | |
container_end_page | 4395 |
container_issue | |
container_start_page | 4392 |
container_title | |
container_volume | |
creator | Gorriz, J. M. Ramirez, J. Lassl, A. Salas-Gonzalez, D. Lang, E. W. Puntonet, C. G. Alvarez, I. Lopez, M. Gomez-Rio, M. |
description | Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers. |
doi_str_mv | 10.1109/NSSMIC.2008.4774255 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4774255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4774255</ieee_id><sourcerecordid>4774255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3</originalsourceid><addsrcrecordid>eNpFkMtqwzAURNUXNEn7Bdn4B-TqyleStTSmj0DSLtx2G2RJDiqxHSx70b-vaQNdDcwchmEIWQNLAZh-eK2q3aZMOWN5ikohF-KCLAE5Ilcg2CVZcKEUZTnXV_8B8muygNmkmRR4S5YxfjHGWYa4IEUxjX1rxmAT27enafRDYoLzLnHBHLo-hpiMfX9Mphi6wy_Td74baW3iDFWfuzty05hj9PdnXZGPp8f38oVu3543ZbGlFpCNtPHK1QI41kwYDlJnuXPaewALUhmHUNtMNkLmUnEwGuexQnudWyNrED5bkfVfb_De709DaM3wvT__kP0AqktNdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic computer aided diagnosis tool using component-based SVM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gorriz, J. M. ; Ramirez, J. ; Lassl, A. ; Salas-Gonzalez, D. ; Lang, E. W. ; Puntonet, C. G. ; Alvarez, I. ; Lopez, M. ; Gomez-Rio, M.</creator><creatorcontrib>Gorriz, J. M. ; Ramirez, J. ; Lassl, A. ; Salas-Gonzalez, D. ; Lang, E. W. ; Puntonet, C. G. ; Alvarez, I. ; Lopez, M. ; Gomez-Rio, M.</creatorcontrib><description>Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 1424427142</identifier><identifier>ISBN: 9781424427147</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 1424427150</identifier><identifier>EISBN: 9781424427154</identifier><identifier>DOI: 10.1109/NSSMIC.2008.4774255</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alzheimer's disease ; Brain ; Computed tomography ; Computer aided diagnosis ; Computer errors ; Coronary arteriosclerosis ; Dementia ; Support vector machine classification ; Support vector machines ; Voting</subject><ispartof>2008 IEEE Nuclear Science Symposium Conference Record, 2008, p.4392-4395</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4774255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4774255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorriz, J. M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Lassl, A.</creatorcontrib><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Lang, E. W.</creatorcontrib><creatorcontrib>Puntonet, C. G.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><title>Automatic computer aided diagnosis tool using component-based SVM</title><title>2008 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Computed tomography</subject><subject>Computer aided diagnosis</subject><subject>Computer errors</subject><subject>Coronary arteriosclerosis</subject><subject>Dementia</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Voting</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>1424427142</isbn><isbn>9781424427147</isbn><isbn>1424427150</isbn><isbn>9781424427154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtqwzAURNUXNEn7Bdn4B-TqyleStTSmj0DSLtx2G2RJDiqxHSx70b-vaQNdDcwchmEIWQNLAZh-eK2q3aZMOWN5ikohF-KCLAE5Ilcg2CVZcKEUZTnXV_8B8muygNmkmRR4S5YxfjHGWYa4IEUxjX1rxmAT27enafRDYoLzLnHBHLo-hpiMfX9Mphi6wy_Td74baW3iDFWfuzty05hj9PdnXZGPp8f38oVu3543ZbGlFpCNtPHK1QI41kwYDlJnuXPaewALUhmHUNtMNkLmUnEwGuexQnudWyNrED5bkfVfb_De709DaM3wvT__kP0AqktNdQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Gorriz, J. M.</creator><creator>Ramirez, J.</creator><creator>Lassl, A.</creator><creator>Salas-Gonzalez, D.</creator><creator>Lang, E. W.</creator><creator>Puntonet, C. G.</creator><creator>Alvarez, I.</creator><creator>Lopez, M.</creator><creator>Gomez-Rio, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>Automatic computer aided diagnosis tool using component-based SVM</title><author>Gorriz, J. M. ; Ramirez, J. ; Lassl, A. ; Salas-Gonzalez, D. ; Lang, E. W. ; Puntonet, C. G. ; Alvarez, I. ; Lopez, M. ; Gomez-Rio, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Computed tomography</topic><topic>Computer aided diagnosis</topic><topic>Computer errors</topic><topic>Coronary arteriosclerosis</topic><topic>Dementia</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorriz, J. M.</creatorcontrib><creatorcontrib>Ramirez, J.</creatorcontrib><creatorcontrib>Lassl, A.</creatorcontrib><creatorcontrib>Salas-Gonzalez, D.</creatorcontrib><creatorcontrib>Lang, E. W.</creatorcontrib><creatorcontrib>Puntonet, C. G.</creatorcontrib><creatorcontrib>Alvarez, I.</creatorcontrib><creatorcontrib>Lopez, M.</creatorcontrib><creatorcontrib>Gomez-Rio, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorriz, J. M.</au><au>Ramirez, J.</au><au>Lassl, A.</au><au>Salas-Gonzalez, D.</au><au>Lang, E. W.</au><au>Puntonet, C. G.</au><au>Alvarez, I.</au><au>Lopez, M.</au><au>Gomez-Rio, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic computer aided diagnosis tool using component-based SVM</atitle><btitle>2008 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>2008-10</date><risdate>2008</risdate><spage>4392</spage><epage>4395</epage><pages>4392-4395</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>1424427142</isbn><isbn>9781424427147</isbn><eisbn>1424427150</eisbn><eisbn>9781424427154</eisbn><abstract>Alzheimer type dementia (ATD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician's diagnosis. However, conventional evaluation of these scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the Alzheimer's disease. The proposed approach is based on a first automatic feature selection, and secondly a combination of component-based support vector machine (SVM) classification and a pasting votes technique of ensemble SVM classifiers.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2008.4774255</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3654 |
ispartof | 2008 IEEE Nuclear Science Symposium Conference Record, 2008, p.4392-4395 |
issn | 1082-3654 2577-0829 |
language | eng |
recordid | cdi_ieee_primary_4774255 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Alzheimer's disease Brain Computed tomography Computer aided diagnosis Computer errors Coronary arteriosclerosis Dementia Support vector machine classification Support vector machines Voting |
title | Automatic computer aided diagnosis tool using component-based SVM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20computer%20aided%20diagnosis%20tool%20using%20component-based%20SVM&rft.btitle=2008%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Gorriz,%20J.%20M.&rft.date=2008-10&rft.spage=4392&rft.epage=4395&rft.pages=4392-4395&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=1424427142&rft.isbn_list=9781424427147&rft_id=info:doi/10.1109/NSSMIC.2008.4774255&rft.eisbn=1424427150&rft.eisbn_list=9781424427154&rft_dat=%3Cieee_6IE%3E4774255%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c140t-fe7db5124b05a216938dd9ee11c167ad41bc36f5686721a9436559e98ca6b15e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4774255&rfr_iscdi=true |