Loading…

Automated Information Extraction from TerraSAR-X Data: The Content Map

While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises sev...

Full description

Saved in:
Bibliographic Details
Main Authors: Datcu, M., Cerra, D., Chaabouni, H., de Miguel, A., Molina, D.E., Schwarz, G., Soccorsi, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page I-85
container_issue
container_start_page I-82
container_title
container_volume 1
creator Datcu, M.
Cerra, D.
Chaabouni, H.
de Miguel, A.
Molina, D.E.
Schwarz, G.
Soccorsi, M.
description While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.
doi_str_mv 10.1109/IGARSS.2008.4778798
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4778798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4778798</ieee_id><sourcerecordid>4778798</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3449c43b010596e019bd02c1b12830868890f2989e73290976bd292b0ac4091c3</originalsourceid><addsrcrecordid>eNo1kMtKw0AYhcdLwbbmCbqZF0j955KZ-d2F2tZARWiycFcmyQQjNimTEfTtjVpX58AHh49DyILBkjHAu2yb7vN8yQHMUmptNJoLEqE2THIpuQEjLsmUs0TEGkBckdk_0Or6DBSimpDZzwaC0ordkGgY3gCAoTKYiCnZpB-hP9rgapp1Te_H2vYdXX8Gb6vf2vj-SAvnvc3TffxCH2yw97R4dXTVd8F1gT7Z0y2ZNPZ9cNE556TYrIvVY7x73mardBe3CCEWUmIlRQkMElRutChr4BUrGTcCjDKjZsPRoNOCI6BWZc2Rl2ArCcgqMSeLv9nWOXc4-fZo_dfhfI_4Bkw8UDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated Information Extraction from TerraSAR-X Data: The Content Map</title><source>IEEE Xplore All Conference Series</source><creator>Datcu, M. ; Cerra, D. ; Chaabouni, H. ; de Miguel, A. ; Molina, D.E. ; Schwarz, G. ; Soccorsi, M.</creator><creatorcontrib>Datcu, M. ; Cerra, D. ; Chaabouni, H. ; de Miguel, A. ; Molina, D.E. ; Schwarz, G. ; Soccorsi, M.</creatorcontrib><description>While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424428076</identifier><identifier>ISBN: 9781424428076</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781424428083</identifier><identifier>EISBN: 1424428084</identifier><identifier>DOI: 10.1109/IGARSS.2008.4778798</identifier><identifier>LCCN: 2008906761</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data mining ; Feature extraction ; feature selection ; Image processing ; information extraction ; Information theory ; Instruments ; Optical sensors ; Polarization ; Remote sensing ; SAR ; TerraSAR-X ; Testing</subject><ispartof>IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008, Vol.1, p.I-82-I-85</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4778798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4778798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Cerra, D.</creatorcontrib><creatorcontrib>Chaabouni, H.</creatorcontrib><creatorcontrib>de Miguel, A.</creatorcontrib><creatorcontrib>Molina, D.E.</creatorcontrib><creatorcontrib>Schwarz, G.</creatorcontrib><creatorcontrib>Soccorsi, M.</creatorcontrib><title>Automated Information Extraction from TerraSAR-X Data: The Content Map</title><title>IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.</description><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Image processing</subject><subject>information extraction</subject><subject>Information theory</subject><subject>Instruments</subject><subject>Optical sensors</subject><subject>Polarization</subject><subject>Remote sensing</subject><subject>SAR</subject><subject>TerraSAR-X</subject><subject>Testing</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424428076</isbn><isbn>9781424428076</isbn><isbn>9781424428083</isbn><isbn>1424428084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKw0AYhcdLwbbmCbqZF0j955KZ-d2F2tZARWiycFcmyQQjNimTEfTtjVpX58AHh49DyILBkjHAu2yb7vN8yQHMUmptNJoLEqE2THIpuQEjLsmUs0TEGkBckdk_0Or6DBSimpDZzwaC0ordkGgY3gCAoTKYiCnZpB-hP9rgapp1Te_H2vYdXX8Gb6vf2vj-SAvnvc3TffxCH2yw97R4dXTVd8F1gT7Z0y2ZNPZ9cNE556TYrIvVY7x73mardBe3CCEWUmIlRQkMElRutChr4BUrGTcCjDKjZsPRoNOCI6BWZc2Rl2ArCcgqMSeLv9nWOXc4-fZo_dfhfI_4Bkw8UDg</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Datcu, M.</creator><creator>Cerra, D.</creator><creator>Chaabouni, H.</creator><creator>de Miguel, A.</creator><creator>Molina, D.E.</creator><creator>Schwarz, G.</creator><creator>Soccorsi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>Automated Information Extraction from TerraSAR-X Data: The Content Map</title><author>Datcu, M. ; Cerra, D. ; Chaabouni, H. ; de Miguel, A. ; Molina, D.E. ; Schwarz, G. ; Soccorsi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3449c43b010596e019bd02c1b12830868890f2989e73290976bd292b0ac4091c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Image processing</topic><topic>information extraction</topic><topic>Information theory</topic><topic>Instruments</topic><topic>Optical sensors</topic><topic>Polarization</topic><topic>Remote sensing</topic><topic>SAR</topic><topic>TerraSAR-X</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Cerra, D.</creatorcontrib><creatorcontrib>Chaabouni, H.</creatorcontrib><creatorcontrib>de Miguel, A.</creatorcontrib><creatorcontrib>Molina, D.E.</creatorcontrib><creatorcontrib>Schwarz, G.</creatorcontrib><creatorcontrib>Soccorsi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Datcu, M.</au><au>Cerra, D.</au><au>Chaabouni, H.</au><au>de Miguel, A.</au><au>Molina, D.E.</au><au>Schwarz, G.</au><au>Soccorsi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated Information Extraction from TerraSAR-X Data: The Content Map</atitle><btitle>IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2008-07</date><risdate>2008</risdate><volume>1</volume><spage>I-82</spage><epage>I-85</epage><pages>I-82-I-85</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424428076</isbn><isbn>9781424428076</isbn><eisbn>9781424428083</eisbn><eisbn>1424428084</eisbn><abstract>While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2008.4778798</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008, Vol.1, p.I-82-I-85
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_4778798
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Data mining
Feature extraction
feature selection
Image processing
information extraction
Information theory
Instruments
Optical sensors
Polarization
Remote sensing
SAR
TerraSAR-X
Testing
title Automated Information Extraction from TerraSAR-X Data: The Content Map
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20Information%20Extraction%20from%20TerraSAR-X%20Data:%20The%20Content%20Map&rft.btitle=IGARSS%202008%20-%202008%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Datcu,%20M.&rft.date=2008-07&rft.volume=1&rft.spage=I-82&rft.epage=I-85&rft.pages=I-82-I-85&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424428076&rft.isbn_list=9781424428076&rft_id=info:doi/10.1109/IGARSS.2008.4778798&rft.eisbn=9781424428083&rft.eisbn_list=1424428084&rft_dat=%3Cieee_CHZPO%3E4778798%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3449c43b010596e019bd02c1b12830868890f2989e73290976bd292b0ac4091c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4778798&rfr_iscdi=true