Loading…
Automated Information Extraction from TerraSAR-X Data: The Content Map
While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises sev...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | I-85 |
container_issue | |
container_start_page | I-82 |
container_title | |
container_volume | 1 |
creator | Datcu, M. Cerra, D. Chaabouni, H. de Miguel, A. Molina, D.E. Schwarz, G. Soccorsi, M. |
description | While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes. |
doi_str_mv | 10.1109/IGARSS.2008.4778798 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4778798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4778798</ieee_id><sourcerecordid>4778798</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3449c43b010596e019bd02c1b12830868890f2989e73290976bd292b0ac4091c3</originalsourceid><addsrcrecordid>eNo1kMtKw0AYhcdLwbbmCbqZF0j955KZ-d2F2tZARWiycFcmyQQjNimTEfTtjVpX58AHh49DyILBkjHAu2yb7vN8yQHMUmptNJoLEqE2THIpuQEjLsmUs0TEGkBckdk_0Or6DBSimpDZzwaC0ordkGgY3gCAoTKYiCnZpB-hP9rgapp1Te_H2vYdXX8Gb6vf2vj-SAvnvc3TffxCH2yw97R4dXTVd8F1gT7Z0y2ZNPZ9cNE556TYrIvVY7x73mardBe3CCEWUmIlRQkMElRutChr4BUrGTcCjDKjZsPRoNOCI6BWZc2Rl2ArCcgqMSeLv9nWOXc4-fZo_dfhfI_4Bkw8UDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated Information Extraction from TerraSAR-X Data: The Content Map</title><source>IEEE Xplore All Conference Series</source><creator>Datcu, M. ; Cerra, D. ; Chaabouni, H. ; de Miguel, A. ; Molina, D.E. ; Schwarz, G. ; Soccorsi, M.</creator><creatorcontrib>Datcu, M. ; Cerra, D. ; Chaabouni, H. ; de Miguel, A. ; Molina, D.E. ; Schwarz, G. ; Soccorsi, M.</creatorcontrib><description>While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424428076</identifier><identifier>ISBN: 9781424428076</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781424428083</identifier><identifier>EISBN: 1424428084</identifier><identifier>DOI: 10.1109/IGARSS.2008.4778798</identifier><identifier>LCCN: 2008906761</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data mining ; Feature extraction ; feature selection ; Image processing ; information extraction ; Information theory ; Instruments ; Optical sensors ; Polarization ; Remote sensing ; SAR ; TerraSAR-X ; Testing</subject><ispartof>IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008, Vol.1, p.I-82-I-85</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4778798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4778798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Cerra, D.</creatorcontrib><creatorcontrib>Chaabouni, H.</creatorcontrib><creatorcontrib>de Miguel, A.</creatorcontrib><creatorcontrib>Molina, D.E.</creatorcontrib><creatorcontrib>Schwarz, G.</creatorcontrib><creatorcontrib>Soccorsi, M.</creatorcontrib><title>Automated Information Extraction from TerraSAR-X Data: The Content Map</title><title>IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.</description><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Image processing</subject><subject>information extraction</subject><subject>Information theory</subject><subject>Instruments</subject><subject>Optical sensors</subject><subject>Polarization</subject><subject>Remote sensing</subject><subject>SAR</subject><subject>TerraSAR-X</subject><subject>Testing</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424428076</isbn><isbn>9781424428076</isbn><isbn>9781424428083</isbn><isbn>1424428084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKw0AYhcdLwbbmCbqZF0j955KZ-d2F2tZARWiycFcmyQQjNimTEfTtjVpX58AHh49DyILBkjHAu2yb7vN8yQHMUmptNJoLEqE2THIpuQEjLsmUs0TEGkBckdk_0Or6DBSimpDZzwaC0ordkGgY3gCAoTKYiCnZpB-hP9rgapp1Te_H2vYdXX8Gb6vf2vj-SAvnvc3TffxCH2yw97R4dXTVd8F1gT7Z0y2ZNPZ9cNE556TYrIvVY7x73mardBe3CCEWUmIlRQkMElRutChr4BUrGTcCjDKjZsPRoNOCI6BWZc2Rl2ArCcgqMSeLv9nWOXc4-fZo_dfhfI_4Bkw8UDg</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Datcu, M.</creator><creator>Cerra, D.</creator><creator>Chaabouni, H.</creator><creator>de Miguel, A.</creator><creator>Molina, D.E.</creator><creator>Schwarz, G.</creator><creator>Soccorsi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200807</creationdate><title>Automated Information Extraction from TerraSAR-X Data: The Content Map</title><author>Datcu, M. ; Cerra, D. ; Chaabouni, H. ; de Miguel, A. ; Molina, D.E. ; Schwarz, G. ; Soccorsi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3449c43b010596e019bd02c1b12830868890f2989e73290976bd292b0ac4091c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Image processing</topic><topic>information extraction</topic><topic>Information theory</topic><topic>Instruments</topic><topic>Optical sensors</topic><topic>Polarization</topic><topic>Remote sensing</topic><topic>SAR</topic><topic>TerraSAR-X</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Cerra, D.</creatorcontrib><creatorcontrib>Chaabouni, H.</creatorcontrib><creatorcontrib>de Miguel, A.</creatorcontrib><creatorcontrib>Molina, D.E.</creatorcontrib><creatorcontrib>Schwarz, G.</creatorcontrib><creatorcontrib>Soccorsi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Datcu, M.</au><au>Cerra, D.</au><au>Chaabouni, H.</au><au>de Miguel, A.</au><au>Molina, D.E.</au><au>Schwarz, G.</au><au>Soccorsi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated Information Extraction from TerraSAR-X Data: The Content Map</atitle><btitle>IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2008-07</date><risdate>2008</risdate><volume>1</volume><spage>I-82</spage><epage>I-85</epage><pages>I-82-I-85</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424428076</isbn><isbn>9781424428076</isbn><eisbn>9781424428083</eisbn><eisbn>1424428084</eisbn><abstract>While typical remote sensing imaging instruments produce more and more data, what we miss today are reliable tools for automated information extraction form these images. In the following, we propose a so-called Content Map, a novel Earth Observation value adding product. Basically, it comprises several class files and a viewer showing the different classes of land use and objects contained in the corresponding image data. In order to avoid processing delays, the class files have to be generated in an unsupervised mode as a real time product; thus, interactive user interactions have to be limited to training and testing intervals. As typical examples we use image data of the German TerraSAR-X mission that produces SAR image data in a variety of different modes.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2008.4778798</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008, Vol.1, p.I-82-I-85 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_4778798 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Data mining Feature extraction feature selection Image processing information extraction Information theory Instruments Optical sensors Polarization Remote sensing SAR TerraSAR-X Testing |
title | Automated Information Extraction from TerraSAR-X Data: The Content Map |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20Information%20Extraction%20from%20TerraSAR-X%20Data:%20The%20Content%20Map&rft.btitle=IGARSS%202008%20-%202008%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Datcu,%20M.&rft.date=2008-07&rft.volume=1&rft.spage=I-82&rft.epage=I-85&rft.pages=I-82-I-85&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424428076&rft.isbn_list=9781424428076&rft_id=info:doi/10.1109/IGARSS.2008.4778798&rft.eisbn=9781424428083&rft.eisbn_list=1424428084&rft_dat=%3Cieee_CHZPO%3E4778798%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3449c43b010596e019bd02c1b12830868890f2989e73290976bd292b0ac4091c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4778798&rfr_iscdi=true |