Loading…
Comparison of (001), (110) and (111) uniaxial- and biaxial- strained-Ge and strained-Si PMOS DGFETs for all channel orientations: Mobility enhancement, drive current, delay and off-state leakage
Using the non-local empirical pseudopotential method (bandstructure), full-band Monte-Carlo simulations (transport), self-consistent Poisson-Schrodinger (electrostatics) and detailed band-to-band-tunneling (BTBT) (including bandstructure and quantum effects) simulations, the effect of surface/channe...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using the non-local empirical pseudopotential method (bandstructure), full-band Monte-Carlo simulations (transport), self-consistent Poisson-Schrodinger (electrostatics) and detailed band-to-band-tunneling (BTBT) (including bandstructure and quantum effects) simulations, the effect of surface/channel orientation, uniaxial- and biaxial-strain, band-structure, mobility, and high-field transport on the drive current, off-state leakage and switching delay in nano-scale, strained-Si and strained-Ge, p-MOS DGFETs have been presented and the optimum strain and channel/surface orientations for highest drive-lowest delay-lowest leakage have been obtained. |
---|---|
ISSN: | 0163-1918 2156-017X |
DOI: | 10.1109/IEDM.2008.4796845 |