Loading…

GRG: knowledge discovery using information generalization, information reduction, and rule generation

We present the three-step GRG approach for learning decision rules from large relational databases. In the first step, an attribute-oriented concept tree ascension technique is applied to generalize an information system. This step loses some information but substantially improves the efficiency of...

Full description

Saved in:
Bibliographic Details
Main Authors: Ning Shan, Hamilton, H.J., Cercone, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 379
container_issue
container_start_page 372
container_title
container_volume
creator Ning Shan
Hamilton, H.J.
Cercone, N.
description We present the three-step GRG approach for learning decision rules from large relational databases. In the first step, an attribute-oriented concept tree ascension technique is applied to generalize an information system. This step loses some information but substantially improves the efficiency of the following steps. In the second step, the reduction technique is applied to generate a minimized information system called a reduct which contains a minimal subset of the generalized attributes and the smallest number of distinct tuples for those attributes. Finally, a set of maximally general rules are derived directly from the reduct. These rules can be used to interpret and understand the active mechanisms underlying the database.
doi_str_mv 10.1109/TAI.1995.479781
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_479781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>479781</ieee_id><sourcerecordid>479781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-13a6f114f473aedffc40fd4181cacb9dc3f2dab750f72ef350e1081529ac063c3</originalsourceid><addsrcrecordid>eNpVUMtKAzEUDT7AaXUtuJoPcOq9eTQTd6XUWigIUtclTW6G6HRGMh2lfr2PduPqcB4cOIexa4QRIpi71WQxQmPUSGqjSzxhGRdaFYBGn7IBlFiOtUCuzliGUPJCSDAXbNB1rwAcFBcZo_nz_D5_a9rPmnxFuY-daz8o7fO-i02Vxya0aWt3sW3yihpKto5ff_T2n5fI9-4g28bnqa_pmP8VL9l5sHVHV0ccspeH2Wr6WCyf5ovpZFlEBLkrUNhxQJRBamHJh-AkBC-xRGfdxngnAvd2oxUEzSkIBfSzCxU31sFYODFkN4feSETr9xS3Nu3Xh3fEN9Q5WUM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GRG: knowledge discovery using information generalization, information reduction, and rule generation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ning Shan ; Hamilton, H.J. ; Cercone, N.</creator><creatorcontrib>Ning Shan ; Hamilton, H.J. ; Cercone, N.</creatorcontrib><description>We present the three-step GRG approach for learning decision rules from large relational databases. In the first step, an attribute-oriented concept tree ascension technique is applied to generalize an information system. This step loses some information but substantially improves the efficiency of the following steps. In the second step, the reduction technique is applied to generate a minimized information system called a reduct which contains a minimal subset of the generalized attributes and the smallest number of distinct tuples for those attributes. Finally, a set of maximally general rules are derived directly from the reduct. These rules can be used to interpret and understand the active mechanisms underlying the database.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 0818673125</identifier><identifier>ISBN: 9780818673122</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/TAI.1995.479781</identifier><language>eng</language><publisher>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</publisher><subject>Computational complexity ; Computer science ; Data analysis ; Data mining ; Decision support systems ; Information systems ; Knowledge representation ; Machine learning ; Relational databases ; Rough sets</subject><ispartof>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, p.372-379</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/479781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/479781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning Shan</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Cercone, N.</creatorcontrib><title>GRG: knowledge discovery using information generalization, information reduction, and rule generation</title><title>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>We present the three-step GRG approach for learning decision rules from large relational databases. In the first step, an attribute-oriented concept tree ascension technique is applied to generalize an information system. This step loses some information but substantially improves the efficiency of the following steps. In the second step, the reduction technique is applied to generate a minimized information system called a reduct which contains a minimal subset of the generalized attributes and the smallest number of distinct tuples for those attributes. Finally, a set of maximally general rules are derived directly from the reduct. These rules can be used to interpret and understand the active mechanisms underlying the database.</description><subject>Computational complexity</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Decision support systems</subject><subject>Information systems</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><subject>Relational databases</subject><subject>Rough sets</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>0818673125</isbn><isbn>9780818673122</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMtKAzEUDT7AaXUtuJoPcOq9eTQTd6XUWigIUtclTW6G6HRGMh2lfr2PduPqcB4cOIexa4QRIpi71WQxQmPUSGqjSzxhGRdaFYBGn7IBlFiOtUCuzliGUPJCSDAXbNB1rwAcFBcZo_nz_D5_a9rPmnxFuY-daz8o7fO-i02Vxya0aWt3sW3yihpKto5ff_T2n5fI9-4g28bnqa_pmP8VL9l5sHVHV0ccspeH2Wr6WCyf5ovpZFlEBLkrUNhxQJRBamHJh-AkBC-xRGfdxngnAvd2oxUEzSkIBfSzCxU31sFYODFkN4feSETr9xS3Nu3Xh3fEN9Q5WUM</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Ning Shan</creator><creator>Hamilton, H.J.</creator><creator>Cercone, N.</creator><general>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>GRG: knowledge discovery using information generalization, information reduction, and rule generation</title><author>Ning Shan ; Hamilton, H.J. ; Cercone, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-13a6f114f473aedffc40fd4181cacb9dc3f2dab750f72ef350e1081529ac063c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Computational complexity</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Decision support systems</topic><topic>Information systems</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><topic>Relational databases</topic><topic>Rough sets</topic><toplevel>online_resources</toplevel><creatorcontrib>Ning Shan</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Cercone, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning Shan</au><au>Hamilton, H.J.</au><au>Cercone, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GRG: knowledge discovery using information generalization, information reduction, and rule generation</atitle><btitle>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>1995</date><risdate>1995</risdate><spage>372</spage><epage>379</epage><pages>372-379</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>0818673125</isbn><isbn>9780818673122</isbn><abstract>We present the three-step GRG approach for learning decision rules from large relational databases. In the first step, an attribute-oriented concept tree ascension technique is applied to generalize an information system. This step loses some information but substantially improves the efficiency of the following steps. In the second step, the reduction technique is applied to generate a minimized information system called a reduct which contains a minimal subset of the generalized attributes and the smallest number of distinct tuples for those attributes. Finally, a set of maximally general rules are derived directly from the reduct. These rules can be used to interpret and understand the active mechanisms underlying the database.</abstract><pub>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</pub><doi>10.1109/TAI.1995.479781</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, p.372-379
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_479781
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational complexity
Computer science
Data analysis
Data mining
Decision support systems
Information systems
Knowledge representation
Machine learning
Relational databases
Rough sets
title GRG: knowledge discovery using information generalization, information reduction, and rule generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GRG:%20knowledge%20discovery%20using%20information%20generalization,%20information%20reduction,%20and%20rule%20generation&rft.btitle=Proceedings%20of%207th%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Ning%20Shan&rft.date=1995&rft.spage=372&rft.epage=379&rft.pages=372-379&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=0818673125&rft.isbn_list=9780818673122&rft_id=info:doi/10.1109/TAI.1995.479781&rft_dat=%3Cieee_6IE%3E479781%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-13a6f114f473aedffc40fd4181cacb9dc3f2dab750f72ef350e1081529ac063c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=479781&rfr_iscdi=true