Loading…

Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases

Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient ve...

Full description

Saved in:
Bibliographic Details
Main Authors: Carter, C.L., Hamilton, H.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 489
container_issue
container_start_page 486
container_title
container_volume
creator Carter, C.L.
Hamilton, H.J.
description Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.
doi_str_mv 10.1109/TAI.1995.479846
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_479846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>479846</ieee_id><sourcerecordid>479846</sourcerecordid><originalsourceid>FETCH-LOGICAL-i145t-7a28a055f943d7b75f0047d95ac560161502a01255e325a680a5e34eca8784663</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMPsK2uBVf5A1NvXpNkWYovKOiibi23M3dqdB6SpJX-ewfq6nybc-A7jN0KmAsB_n69eJkL781cW-90ecYmUllTgPD2nE3BCVdaJaS5YBMBThZKg79i05S-ACQYqSbs441iM8QO-4o4HbDdYw5Dz4eGY84xbPeZiiEG6jPVHNvdyPmzS3ws8e9--G2p3hGvQ6qGA8Ujb-LQ8RozbjFRumaXDbaJbv5zxt4fH9bL52L1-vSyXKyKILTJhUXpEIxpvFa13VrTAGhbe4OVKUGUwoBEGE0MKWmwdIAjaarQ2VG8VDN2d9oNRLT5iaHDeNycblF_BR9VOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carter, C.L. ; Hamilton, H.J.</creator><creatorcontrib>Carter, C.L. ; Hamilton, H.J.</creatorcontrib><description>Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 0818673125</identifier><identifier>ISBN: 9780818673122</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/TAI.1995.479846</identifier><language>eng</language><publisher>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</publisher><subject>Computer science ; Content based retrieval ; Data mining ; Information retrieval ; Machine learning ; Memory management ; Motion pictures ; Pattern recognition ; Relational databases ; Testing</subject><ispartof>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, p.486-489</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/479846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/479846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carter, C.L.</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><title>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</title><title>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.</description><subject>Computer science</subject><subject>Content based retrieval</subject><subject>Data mining</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Memory management</subject><subject>Motion pictures</subject><subject>Pattern recognition</subject><subject>Relational databases</subject><subject>Testing</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>0818673125</isbn><isbn>9780818673122</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLAzEUhYMPsK2uBVf5A1NvXpNkWYovKOiibi23M3dqdB6SpJX-ewfq6nybc-A7jN0KmAsB_n69eJkL781cW-90ecYmUllTgPD2nE3BCVdaJaS5YBMBThZKg79i05S-ACQYqSbs441iM8QO-4o4HbDdYw5Dz4eGY84xbPeZiiEG6jPVHNvdyPmzS3ws8e9--G2p3hGvQ6qGA8Ujb-LQ8RozbjFRumaXDbaJbv5zxt4fH9bL52L1-vSyXKyKILTJhUXpEIxpvFa13VrTAGhbe4OVKUGUwoBEGE0MKWmwdIAjaarQ2VG8VDN2d9oNRLT5iaHDeNycblF_BR9VOw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Carter, C.L.</creator><creator>Hamilton, H.J.</creator><general>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</title><author>Carter, C.L. ; Hamilton, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i145t-7a28a055f943d7b75f0047d95ac560161502a01255e325a680a5e34eca8784663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Computer science</topic><topic>Content based retrieval</topic><topic>Data mining</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Memory management</topic><topic>Motion pictures</topic><topic>Pattern recognition</topic><topic>Relational databases</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Carter, C.L.</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carter, C.L.</au><au>Hamilton, H.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</atitle><btitle>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>1995</date><risdate>1995</risdate><spage>486</spage><epage>489</epage><pages>486-489</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>0818673125</isbn><isbn>9780818673122</isbn><abstract>Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.</abstract><pub>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</pub><doi>10.1109/TAI.1995.479846</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, p.486-489
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_479846
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Content based retrieval
Data mining
Information retrieval
Machine learning
Memory management
Motion pictures
Pattern recognition
Relational databases
Testing
title Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20evaluation%20of%20attribute-oriented%20algorithms%20for%20knowledge%20discovery%20from%20databases&rft.btitle=Proceedings%20of%207th%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Carter,%20C.L.&rft.date=1995&rft.spage=486&rft.epage=489&rft.pages=486-489&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=0818673125&rft.isbn_list=9780818673122&rft_id=info:doi/10.1109/TAI.1995.479846&rft_dat=%3Cieee_6IE%3E479846%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i145t-7a28a055f943d7b75f0047d95ac560161502a01255e325a680a5e34eca8784663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=479846&rfr_iscdi=true