Loading…
Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases
Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient ve...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 489 |
container_issue | |
container_start_page | 486 |
container_title | |
container_volume | |
creator | Carter, C.L. Hamilton, H.J. |
description | Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages. |
doi_str_mv | 10.1109/TAI.1995.479846 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_479846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>479846</ieee_id><sourcerecordid>479846</sourcerecordid><originalsourceid>FETCH-LOGICAL-i145t-7a28a055f943d7b75f0047d95ac560161502a01255e325a680a5e34eca8784663</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMPsK2uBVf5A1NvXpNkWYovKOiibi23M3dqdB6SpJX-ewfq6nybc-A7jN0KmAsB_n69eJkL781cW-90ecYmUllTgPD2nE3BCVdaJaS5YBMBThZKg79i05S-ACQYqSbs441iM8QO-4o4HbDdYw5Dz4eGY84xbPeZiiEG6jPVHNvdyPmzS3ws8e9--G2p3hGvQ6qGA8Ujb-LQ8RozbjFRumaXDbaJbv5zxt4fH9bL52L1-vSyXKyKILTJhUXpEIxpvFa13VrTAGhbe4OVKUGUwoBEGE0MKWmwdIAjaarQ2VG8VDN2d9oNRLT5iaHDeNycblF_BR9VOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carter, C.L. ; Hamilton, H.J.</creator><creatorcontrib>Carter, C.L. ; Hamilton, H.J.</creatorcontrib><description>Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 0818673125</identifier><identifier>ISBN: 9780818673122</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/TAI.1995.479846</identifier><language>eng</language><publisher>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</publisher><subject>Computer science ; Content based retrieval ; Data mining ; Information retrieval ; Machine learning ; Memory management ; Motion pictures ; Pattern recognition ; Relational databases ; Testing</subject><ispartof>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, p.486-489</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/479846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/479846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carter, C.L.</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><title>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</title><title>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.</description><subject>Computer science</subject><subject>Content based retrieval</subject><subject>Data mining</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Memory management</subject><subject>Motion pictures</subject><subject>Pattern recognition</subject><subject>Relational databases</subject><subject>Testing</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>0818673125</isbn><isbn>9780818673122</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLAzEUhYMPsK2uBVf5A1NvXpNkWYovKOiibi23M3dqdB6SpJX-ewfq6nybc-A7jN0KmAsB_n69eJkL781cW-90ecYmUllTgPD2nE3BCVdaJaS5YBMBThZKg79i05S-ACQYqSbs441iM8QO-4o4HbDdYw5Dz4eGY84xbPeZiiEG6jPVHNvdyPmzS3ws8e9--G2p3hGvQ6qGA8Ujb-LQ8RozbjFRumaXDbaJbv5zxt4fH9bL52L1-vSyXKyKILTJhUXpEIxpvFa13VrTAGhbe4OVKUGUwoBEGE0MKWmwdIAjaarQ2VG8VDN2d9oNRLT5iaHDeNycblF_BR9VOw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Carter, C.L.</creator><creator>Hamilton, H.J.</creator><general>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</title><author>Carter, C.L. ; Hamilton, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i145t-7a28a055f943d7b75f0047d95ac560161502a01255e325a680a5e34eca8784663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Computer science</topic><topic>Content based retrieval</topic><topic>Data mining</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Memory management</topic><topic>Motion pictures</topic><topic>Pattern recognition</topic><topic>Relational databases</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Carter, C.L.</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carter, C.L.</au><au>Hamilton, H.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases</atitle><btitle>Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>1995</date><risdate>1995</risdate><spage>486</spage><epage>489</epage><pages>486-489</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>0818673125</isbn><isbn>9780818673122</isbn><abstract>Practical tools for knowledge discovery from databases must be efficient enough to handle large data sets found in commercial environments. Attribute-oriented induction has proved to be a useful method for knowledge discovery. Three algorithms are AOI, LCHR and GDBR. We have implemented efficient versions of each algorithm and empirically compared them on large commercial data sets. These tests show that GDBR is consistently faster than AOI and LCHR. GDBR's times increase linearly with increased input size, while times for AOI and LCHR increase non-linearly when memory is exceeded. Through better memory management, however, AOI can be improved to provide some advantages.</abstract><pub>IEEE Comput. Soc. Technical Committee on Pattern Analysis and Machine Intelligence</pub><doi>10.1109/TAI.1995.479846</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3409 |
ispartof | Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, p.486-489 |
issn | 1082-3409 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_479846 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Content based retrieval Data mining Information retrieval Machine learning Memory management Motion pictures Pattern recognition Relational databases Testing |
title | Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20evaluation%20of%20attribute-oriented%20algorithms%20for%20knowledge%20discovery%20from%20databases&rft.btitle=Proceedings%20of%207th%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Carter,%20C.L.&rft.date=1995&rft.spage=486&rft.epage=489&rft.pages=486-489&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=0818673125&rft.isbn_list=9780818673122&rft_id=info:doi/10.1109/TAI.1995.479846&rft_dat=%3Cieee_6IE%3E479846%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i145t-7a28a055f943d7b75f0047d95ac560161502a01255e325a680a5e34eca8784663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=479846&rfr_iscdi=true |