Loading…

A Shearlet Approach to Edge Analysis and Detection

It is well known that the wavelet transform provides a very effective framework for analysis of multiscale edges. In this paper, we propose a novel approach based on the shearlet transform: a multiscale directional transform with a greater ability to localize distributed discontinuities such as edge...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2009-05, Vol.18 (5), p.929-941
Main Authors: Sheng Yi, Labate, D., Easley, G.R., Krim, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that the wavelet transform provides a very effective framework for analysis of multiscale edges. In this paper, we propose a novel approach based on the shearlet transform: a multiscale directional transform with a greater ability to localize distributed discontinuities such as edges. Indeed, unlike traditional wavelets, shearlets are theoretically optimal in representing images with edges and, in particular, have the ability to fully capture directional and other geometrical features. Numerical examples demonstrate that the shearlet approach is highly effective at detecting both the location and orientation of edges, and outperforms methods based on wavelets as well as other standard methods. Furthermore, the shearlet approach is useful to design simple and effective algorithms for the detection of corners and junctions.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2009.2013082