Loading…
Glucose Detection With a Commercial MOSFET Using a ZnO Nanowires Extended Gate
ZnO nanowires were grown on Ag wire with a diameter of ~250 mum and used in an electrochemical sensor. The enzyme glucose oxidase (GOD) was immobilized on the ZnO nanowires, and the Ag wire was connected directly to the gate of a MOSFET. Upon exposure to glucose (1- 100 muM), the electrochemical res...
Saved in:
Published in: | IEEE transactions on nanotechnology 2009-11, Vol.8 (6), p.678-683 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO nanowires were grown on Ag wire with a diameter of ~250 mum and used in an electrochemical sensor. The enzyme glucose oxidase (GOD) was immobilized on the ZnO nanowires, and the Ag wire was connected directly to the gate of a MOSFET. Upon exposure to glucose (1- 100 muM), the electrochemical response from the GOD induced a stable measurable voltage change on the gate leading to a strong modulation of the current through the MOSFET. For a sensor with uniform ZnO nanowires functionalized with GOD, a fast response time of less than 100 ms was demonstrated. The effect of the uniformity of the ZnO nanowires on the sensing property was also investigated. The extended-gate arrangement facilitated glucose detection in small sample volumes, and made it possible to demonstrate the present sensor concept using a standard low-threshold MOSFET. The extended-gate MOSFET sensor approach demonstrates the possibility and potential of the use of nanostructures coupled to standard electronic components for biosensing applications. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2009.2019958 |