Loading…

The tracking of changes in chemical processes using computer vision and self-organizing maps

Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth,...

Full description

Saved in:
Bibliographic Details
Main Authors: van Deventer, J.S.J., Aldrich, C., Moolman, D.W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3073 vol.6
container_issue
container_start_page 3068
container_title
container_volume 6
creator van Deventer, J.S.J.
Aldrich, C.
Moolman, D.W.
description Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.
doi_str_mv 10.1109/ICNN.1995.487273
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_487273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>487273</ieee_id><sourcerecordid>487273</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-7dc775f8f37cc4dacfc7501e3d062b9aded595db69222e1d09ba9aa881d892553</originalsourceid><addsrcrecordid>eNotUE1LxDAUDIigrL2Lp_yB1iRtmuQoxY-FZb2sN2F5TV670TYtTVfQX2-X3cfADMMwMI-Qe84yzpl5XFfbbcaNkVmhlVD5FUmM0mxBLlSpzQ1JYvxiyxVS5kreks_dAek8gf32oaVDQ-0BQouR-rBI7L2Fjo7TYDHGxT3GU8wO_XiccaI_PvohUAiORuyadJhaCP7vlOlhjHfkuoEuYnLhFfl4ed5Vb-nm_XVdPW1Sz1kxp8pZpWSjm1xZWziwjVWSccwdK0VtwKGTRrq6NEII5I6ZGgyA1txpI5YhK_Jw7vWIuB8n38P0uz-_IP8HagRTSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The tracking of changes in chemical processes using computer vision and self-organizing maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>van Deventer, J.S.J. ; Aldrich, C. ; Moolman, D.W.</creator><creatorcontrib>van Deventer, J.S.J. ; Aldrich, C. ; Moolman, D.W.</creatorcontrib><description>Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.</description><identifier>ISBN: 9780780327689</identifier><identifier>ISBN: 0780327683</identifier><identifier>DOI: 10.1109/ICNN.1995.487273</identifier><language>eng</language><publisher>IEEE</publisher><subject>Africa ; Chemical engineering ; Chemical processes ; Computer vision ; Leaching ; Minerals ; Mining industry ; Ores ; Self organizing feature maps ; Visualization</subject><ispartof>Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, Vol.6, p.3068-3073 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/487273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/487273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Deventer, J.S.J.</creatorcontrib><creatorcontrib>Aldrich, C.</creatorcontrib><creatorcontrib>Moolman, D.W.</creatorcontrib><title>The tracking of changes in chemical processes using computer vision and self-organizing maps</title><title>Proceedings of ICNN'95 - International Conference on Neural Networks</title><addtitle>ICNN</addtitle><description>Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.</description><subject>Africa</subject><subject>Chemical engineering</subject><subject>Chemical processes</subject><subject>Computer vision</subject><subject>Leaching</subject><subject>Minerals</subject><subject>Mining industry</subject><subject>Ores</subject><subject>Self organizing feature maps</subject><subject>Visualization</subject><isbn>9780780327689</isbn><isbn>0780327683</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUE1LxDAUDIigrL2Lp_yB1iRtmuQoxY-FZb2sN2F5TV670TYtTVfQX2-X3cfADMMwMI-Qe84yzpl5XFfbbcaNkVmhlVD5FUmM0mxBLlSpzQ1JYvxiyxVS5kreks_dAek8gf32oaVDQ-0BQouR-rBI7L2Fjo7TYDHGxT3GU8wO_XiccaI_PvohUAiORuyadJhaCP7vlOlhjHfkuoEuYnLhFfl4ed5Vb-nm_XVdPW1Sz1kxp8pZpWSjm1xZWziwjVWSccwdK0VtwKGTRrq6NEII5I6ZGgyA1txpI5YhK_Jw7vWIuB8n38P0uz-_IP8HagRTSw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>van Deventer, J.S.J.</creator><creator>Aldrich, C.</creator><creator>Moolman, D.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>The tracking of changes in chemical processes using computer vision and self-organizing maps</title><author>van Deventer, J.S.J. ; Aldrich, C. ; Moolman, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-7dc775f8f37cc4dacfc7501e3d062b9aded595db69222e1d09ba9aa881d892553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Africa</topic><topic>Chemical engineering</topic><topic>Chemical processes</topic><topic>Computer vision</topic><topic>Leaching</topic><topic>Minerals</topic><topic>Mining industry</topic><topic>Ores</topic><topic>Self organizing feature maps</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>van Deventer, J.S.J.</creatorcontrib><creatorcontrib>Aldrich, C.</creatorcontrib><creatorcontrib>Moolman, D.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Deventer, J.S.J.</au><au>Aldrich, C.</au><au>Moolman, D.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The tracking of changes in chemical processes using computer vision and self-organizing maps</atitle><btitle>Proceedings of ICNN'95 - International Conference on Neural Networks</btitle><stitle>ICNN</stitle><date>1995</date><risdate>1995</risdate><volume>6</volume><spage>3068</spage><epage>3073 vol.6</epage><pages>3068-3073 vol.6</pages><isbn>9780780327689</isbn><isbn>0780327683</isbn><abstract>Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1995.487273</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780327689
ispartof Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, Vol.6, p.3068-3073 vol.6
issn
language eng
recordid cdi_ieee_primary_487273
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Africa
Chemical engineering
Chemical processes
Computer vision
Leaching
Minerals
Mining industry
Ores
Self organizing feature maps
Visualization
title The tracking of changes in chemical processes using computer vision and self-organizing maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20tracking%20of%20changes%20in%20chemical%20processes%20using%20computer%20vision%20and%20self-organizing%20maps&rft.btitle=Proceedings%20of%20ICNN'95%20-%20International%20Conference%20on%20Neural%20Networks&rft.au=van%20Deventer,%20J.S.J.&rft.date=1995&rft.volume=6&rft.spage=3068&rft.epage=3073%20vol.6&rft.pages=3068-3073%20vol.6&rft.isbn=9780780327689&rft.isbn_list=0780327683&rft_id=info:doi/10.1109/ICNN.1995.487273&rft_dat=%3Cieee_6IE%3E487273%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-7dc775f8f37cc4dacfc7501e3d062b9aded595db69222e1d09ba9aa881d892553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=487273&rfr_iscdi=true