Loading…
The tracking of changes in chemical processes using computer vision and self-organizing maps
Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth,...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3073 vol.6 |
container_issue | |
container_start_page | 3068 |
container_title | |
container_volume | 6 |
creator | van Deventer, J.S.J. Aldrich, C. Moolman, D.W. |
description | Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores. |
doi_str_mv | 10.1109/ICNN.1995.487273 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_487273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>487273</ieee_id><sourcerecordid>487273</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-7dc775f8f37cc4dacfc7501e3d062b9aded595db69222e1d09ba9aa881d892553</originalsourceid><addsrcrecordid>eNotUE1LxDAUDIigrL2Lp_yB1iRtmuQoxY-FZb2sN2F5TV670TYtTVfQX2-X3cfADMMwMI-Qe84yzpl5XFfbbcaNkVmhlVD5FUmM0mxBLlSpzQ1JYvxiyxVS5kreks_dAek8gf32oaVDQ-0BQouR-rBI7L2Fjo7TYDHGxT3GU8wO_XiccaI_PvohUAiORuyadJhaCP7vlOlhjHfkuoEuYnLhFfl4ed5Vb-nm_XVdPW1Sz1kxp8pZpWSjm1xZWziwjVWSccwdK0VtwKGTRrq6NEII5I6ZGgyA1txpI5YhK_Jw7vWIuB8n38P0uz-_IP8HagRTSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The tracking of changes in chemical processes using computer vision and self-organizing maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>van Deventer, J.S.J. ; Aldrich, C. ; Moolman, D.W.</creator><creatorcontrib>van Deventer, J.S.J. ; Aldrich, C. ; Moolman, D.W.</creatorcontrib><description>Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.</description><identifier>ISBN: 9780780327689</identifier><identifier>ISBN: 0780327683</identifier><identifier>DOI: 10.1109/ICNN.1995.487273</identifier><language>eng</language><publisher>IEEE</publisher><subject>Africa ; Chemical engineering ; Chemical processes ; Computer vision ; Leaching ; Minerals ; Mining industry ; Ores ; Self organizing feature maps ; Visualization</subject><ispartof>Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, Vol.6, p.3068-3073 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/487273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/487273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Deventer, J.S.J.</creatorcontrib><creatorcontrib>Aldrich, C.</creatorcontrib><creatorcontrib>Moolman, D.W.</creatorcontrib><title>The tracking of changes in chemical processes using computer vision and self-organizing maps</title><title>Proceedings of ICNN'95 - International Conference on Neural Networks</title><addtitle>ICNN</addtitle><description>Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.</description><subject>Africa</subject><subject>Chemical engineering</subject><subject>Chemical processes</subject><subject>Computer vision</subject><subject>Leaching</subject><subject>Minerals</subject><subject>Mining industry</subject><subject>Ores</subject><subject>Self organizing feature maps</subject><subject>Visualization</subject><isbn>9780780327689</isbn><isbn>0780327683</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUE1LxDAUDIigrL2Lp_yB1iRtmuQoxY-FZb2sN2F5TV670TYtTVfQX2-X3cfADMMwMI-Qe84yzpl5XFfbbcaNkVmhlVD5FUmM0mxBLlSpzQ1JYvxiyxVS5kreks_dAek8gf32oaVDQ-0BQouR-rBI7L2Fjo7TYDHGxT3GU8wO_XiccaI_PvohUAiORuyadJhaCP7vlOlhjHfkuoEuYnLhFfl4ed5Vb-nm_XVdPW1Sz1kxp8pZpWSjm1xZWziwjVWSccwdK0VtwKGTRrq6NEII5I6ZGgyA1txpI5YhK_Jw7vWIuB8n38P0uz-_IP8HagRTSw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>van Deventer, J.S.J.</creator><creator>Aldrich, C.</creator><creator>Moolman, D.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>The tracking of changes in chemical processes using computer vision and self-organizing maps</title><author>van Deventer, J.S.J. ; Aldrich, C. ; Moolman, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-7dc775f8f37cc4dacfc7501e3d062b9aded595db69222e1d09ba9aa881d892553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Africa</topic><topic>Chemical engineering</topic><topic>Chemical processes</topic><topic>Computer vision</topic><topic>Leaching</topic><topic>Minerals</topic><topic>Mining industry</topic><topic>Ores</topic><topic>Self organizing feature maps</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>van Deventer, J.S.J.</creatorcontrib><creatorcontrib>Aldrich, C.</creatorcontrib><creatorcontrib>Moolman, D.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Deventer, J.S.J.</au><au>Aldrich, C.</au><au>Moolman, D.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The tracking of changes in chemical processes using computer vision and self-organizing maps</atitle><btitle>Proceedings of ICNN'95 - International Conference on Neural Networks</btitle><stitle>ICNN</stitle><date>1995</date><risdate>1995</risdate><volume>6</volume><spage>3068</spage><epage>3073 vol.6</epage><pages>3068-3073 vol.6</pages><isbn>9780780327689</isbn><isbn>0780327683</isbn><abstract>Frequently, chemical processes involve so many independent and dependent variables that the plant operator finds it difficult to visualise or even observe a change in process conditions. In froth flotation the operator is supposed to visually observe process changes from the appearance of the froth, which is an unreasonable demand under industrial conditions. An online computer vision system based on a textural analysis of the froth phase has been developed in South Africa and has been in operation on an industrial flotation plant since the end of 1994. This system determines textural parameters online, and tracks the changes in process conditions via a self-organizing map (SOM) incorporating a Kohonen layer. This monitoring system warns the operator about fluctuations in reagent addition, and gives an idea of the type of froth encountered. In a further example, changes in the mineralogical characteristics of gold ores are represented on an SOM map, based on the diagnostic leaching behaviour of such ores.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1995.487273</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780327689 |
ispartof | Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, Vol.6, p.3068-3073 vol.6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_487273 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Africa Chemical engineering Chemical processes Computer vision Leaching Minerals Mining industry Ores Self organizing feature maps Visualization |
title | The tracking of changes in chemical processes using computer vision and self-organizing maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20tracking%20of%20changes%20in%20chemical%20processes%20using%20computer%20vision%20and%20self-organizing%20maps&rft.btitle=Proceedings%20of%20ICNN'95%20-%20International%20Conference%20on%20Neural%20Networks&rft.au=van%20Deventer,%20J.S.J.&rft.date=1995&rft.volume=6&rft.spage=3068&rft.epage=3073%20vol.6&rft.pages=3068-3073%20vol.6&rft.isbn=9780780327689&rft.isbn_list=0780327683&rft_id=info:doi/10.1109/ICNN.1995.487273&rft_dat=%3Cieee_6IE%3E487273%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-7dc775f8f37cc4dacfc7501e3d062b9aded595db69222e1d09ba9aa881d892553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=487273&rfr_iscdi=true |