Loading…
Corrective training of hidden control neural network
A corrective training algorithm for hidden control neural network (HCNN) is proposed in this paper with application to the isolated spoken Korean digit recognition. The proposed algorithm tries to heuristically minimize the number of recognition errors, which improves the discriminatory power of the...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2870 vol.5 |
container_issue | |
container_start_page | 2867 |
container_title | |
container_volume | 5 |
creator | KyungMin Na Soo-Ik Chae SouGuil Ann |
description | A corrective training algorithm for hidden control neural network (HCNN) is proposed in this paper with application to the isolated spoken Korean digit recognition. The proposed algorithm tries to heuristically minimize the number of recognition errors, which improves the discriminatory power of the conventional HCNN-based speech recognizers. Experimental results showed 25% reduction for closed test, and 10% reduction for open test in the number of recognition errors. |
doi_str_mv | 10.1109/ICNN.1995.488189 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_488189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>488189</ieee_id><sourcerecordid>488189</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-4bbb2bff9fc91fec219d275f0d5165ce2e4fdc72fb49dae6013634c2476850103</originalsourceid><addsrcrecordid>eNotj0tLxDAUhQMiKGP34qp_oDU3jyZ3KcXHwDBudD00yY1Gx1TSqvjvrcwcDny7j3MYuwTeAnC8XvfbbQuIulXWgsUTVqGxfKkUprN4xqppeuNLlNbS6HOm-rEU8nP6pnouQ8opv9RjrF9TCJRrP-a5jPs601cZ_jH_jOX9gp3GYT9RdeSKPd_dPvUPzebxft3fbJoEXM2Ncs4JFyNGjxDJC8AgjI48aOi0J0EqBm9EdArDQB0H2UnlhVqmag5crtjVwZuIaPdZ0sdQfneHa_IPvMdESw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Corrective training of hidden control neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>KyungMin Na ; Soo-Ik Chae ; SouGuil Ann</creator><creatorcontrib>KyungMin Na ; Soo-Ik Chae ; SouGuil Ann</creatorcontrib><description>A corrective training algorithm for hidden control neural network (HCNN) is proposed in this paper with application to the isolated spoken Korean digit recognition. The proposed algorithm tries to heuristically minimize the number of recognition errors, which improves the discriminatory power of the conventional HCNN-based speech recognizers. Experimental results showed 25% reduction for closed test, and 10% reduction for open test in the number of recognition errors.</description><identifier>ISBN: 9780780327689</identifier><identifier>ISBN: 0780327683</identifier><identifier>DOI: 10.1109/ICNN.1995.488189</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Backpropagation algorithms ; Electronic mail ; Error correction ; Hidden Markov models ; Maximum likelihood estimation ; Neural networks ; Predictive models ; Speech recognition ; Testing</subject><ispartof>Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, Vol.5, p.2867-2870 vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/488189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/488189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>KyungMin Na</creatorcontrib><creatorcontrib>Soo-Ik Chae</creatorcontrib><creatorcontrib>SouGuil Ann</creatorcontrib><title>Corrective training of hidden control neural network</title><title>Proceedings of ICNN'95 - International Conference on Neural Networks</title><addtitle>ICNN</addtitle><description>A corrective training algorithm for hidden control neural network (HCNN) is proposed in this paper with application to the isolated spoken Korean digit recognition. The proposed algorithm tries to heuristically minimize the number of recognition errors, which improves the discriminatory power of the conventional HCNN-based speech recognizers. Experimental results showed 25% reduction for closed test, and 10% reduction for open test in the number of recognition errors.</description><subject>Artificial neural networks</subject><subject>Backpropagation algorithms</subject><subject>Electronic mail</subject><subject>Error correction</subject><subject>Hidden Markov models</subject><subject>Maximum likelihood estimation</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Speech recognition</subject><subject>Testing</subject><isbn>9780780327689</isbn><isbn>0780327683</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLxDAUhQMiKGP34qp_oDU3jyZ3KcXHwDBudD00yY1Gx1TSqvjvrcwcDny7j3MYuwTeAnC8XvfbbQuIulXWgsUTVqGxfKkUprN4xqppeuNLlNbS6HOm-rEU8nP6pnouQ8opv9RjrF9TCJRrP-a5jPs601cZ_jH_jOX9gp3GYT9RdeSKPd_dPvUPzebxft3fbJoEXM2Ncs4JFyNGjxDJC8AgjI48aOi0J0EqBm9EdArDQB0H2UnlhVqmag5crtjVwZuIaPdZ0sdQfneHa_IPvMdESw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>KyungMin Na</creator><creator>Soo-Ik Chae</creator><creator>SouGuil Ann</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Corrective training of hidden control neural network</title><author>KyungMin Na ; Soo-Ik Chae ; SouGuil Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-4bbb2bff9fc91fec219d275f0d5165ce2e4fdc72fb49dae6013634c2476850103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Artificial neural networks</topic><topic>Backpropagation algorithms</topic><topic>Electronic mail</topic><topic>Error correction</topic><topic>Hidden Markov models</topic><topic>Maximum likelihood estimation</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Speech recognition</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>KyungMin Na</creatorcontrib><creatorcontrib>Soo-Ik Chae</creatorcontrib><creatorcontrib>SouGuil Ann</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KyungMin Na</au><au>Soo-Ik Chae</au><au>SouGuil Ann</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Corrective training of hidden control neural network</atitle><btitle>Proceedings of ICNN'95 - International Conference on Neural Networks</btitle><stitle>ICNN</stitle><date>1995</date><risdate>1995</risdate><volume>5</volume><spage>2867</spage><epage>2870 vol.5</epage><pages>2867-2870 vol.5</pages><isbn>9780780327689</isbn><isbn>0780327683</isbn><abstract>A corrective training algorithm for hidden control neural network (HCNN) is proposed in this paper with application to the isolated spoken Korean digit recognition. The proposed algorithm tries to heuristically minimize the number of recognition errors, which improves the discriminatory power of the conventional HCNN-based speech recognizers. Experimental results showed 25% reduction for closed test, and 10% reduction for open test in the number of recognition errors.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1995.488189</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780327689 |
ispartof | Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, Vol.5, p.2867-2870 vol.5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_488189 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Backpropagation algorithms Electronic mail Error correction Hidden Markov models Maximum likelihood estimation Neural networks Predictive models Speech recognition Testing |
title | Corrective training of hidden control neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Corrective%20training%20of%20hidden%20control%20neural%20network&rft.btitle=Proceedings%20of%20ICNN'95%20-%20International%20Conference%20on%20Neural%20Networks&rft.au=KyungMin%20Na&rft.date=1995&rft.volume=5&rft.spage=2867&rft.epage=2870%20vol.5&rft.pages=2867-2870%20vol.5&rft.isbn=9780780327689&rft.isbn_list=0780327683&rft_id=info:doi/10.1109/ICNN.1995.488189&rft_dat=%3Cieee_6IE%3E488189%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-4bbb2bff9fc91fec219d275f0d5165ce2e4fdc72fb49dae6013634c2476850103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=488189&rfr_iscdi=true |