Loading…

An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory

This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A da...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruijia Feng, Guangyuan Zhang, Bo Cheng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 902
container_issue
container_start_page 897
container_title
container_volume
creator Ruijia Feng
Guangyuan Zhang
Bo Cheng
description This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.
doi_str_mv 10.1109/ICNSC.2009.4919399
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4919399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4919399</ieee_id><sourcerecordid>4919399</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2eea31a3fbc9c0f8d40d79e6690cb94f9e22af7bae617a6f603ca7bf39c50bc93</originalsourceid><addsrcrecordid>eNo1kNtOwzAMhoPQJNjoC8BNXqAlp6bz5VROkya42O6ntHVY0NqOJAPt7QliWLIt2__3X5iQW84KzhncL-vXdV0IxqBQwEECXJApV0IpqUCwS5JBNf-fuZ6QadLOgafUVyQL4YOlUKWoSn5NPhcDHYe8GY3vaDiFiD21o6cdRmyjG95p590XpoUfv4MbMATamIBdomh_3EeXBxzCL2GiofYYXDqkmsgH7A_J0OfrnbHJIu5w9KcbMrFmHzA79xnZPD1u6pd89fa8rBer3AGLuUA0khtpmxZaZuedYl0FqDWwtgFlAYUwtmoMal4ZbTWTrakaK6EtWWLkjNz92TpE3B68640_bc8fkz-xEWBm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruijia Feng ; Guangyuan Zhang ; Bo Cheng</creator><creatorcontrib>Ruijia Feng ; Guangyuan Zhang ; Bo Cheng</creatorcontrib><description>This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.</description><identifier>ISBN: 9781424434916</identifier><identifier>ISBN: 1424434912</identifier><identifier>EISBN: 1424434920</identifier><identifier>EISBN: 9781424434923</identifier><identifier>DOI: 10.1109/ICNSC.2009.4919399</identifier><identifier>LCCN: 2008910896</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Injuries ; Position measurement ; Pulse measurements ; Real time systems ; Road accidents ; Sensor fusion ; System performance ; Uncertainty ; Vehicle driving</subject><ispartof>2009 International Conference on Networking, Sensing and Control, 2009, p.897-902</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4919399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4919399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruijia Feng</creatorcontrib><creatorcontrib>Guangyuan Zhang</creatorcontrib><creatorcontrib>Bo Cheng</creatorcontrib><title>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</title><title>2009 International Conference on Networking, Sensing and Control</title><addtitle>ICNSC</addtitle><description>This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.</description><subject>Computer vision</subject><subject>Injuries</subject><subject>Position measurement</subject><subject>Pulse measurements</subject><subject>Real time systems</subject><subject>Road accidents</subject><subject>Sensor fusion</subject><subject>System performance</subject><subject>Uncertainty</subject><subject>Vehicle driving</subject><isbn>9781424434916</isbn><isbn>1424434912</isbn><isbn>1424434920</isbn><isbn>9781424434923</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtOwzAMhoPQJNjoC8BNXqAlp6bz5VROkya42O6ntHVY0NqOJAPt7QliWLIt2__3X5iQW84KzhncL-vXdV0IxqBQwEECXJApV0IpqUCwS5JBNf-fuZ6QadLOgafUVyQL4YOlUKWoSn5NPhcDHYe8GY3vaDiFiD21o6cdRmyjG95p590XpoUfv4MbMATamIBdomh_3EeXBxzCL2GiofYYXDqkmsgH7A_J0OfrnbHJIu5w9KcbMrFmHzA79xnZPD1u6pd89fa8rBer3AGLuUA0khtpmxZaZuedYl0FqDWwtgFlAYUwtmoMal4ZbTWTrakaK6EtWWLkjNz92TpE3B68640_bc8fkz-xEWBm</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Ruijia Feng</creator><creator>Guangyuan Zhang</creator><creator>Bo Cheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</title><author>Ruijia Feng ; Guangyuan Zhang ; Bo Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2eea31a3fbc9c0f8d40d79e6690cb94f9e22af7bae617a6f603ca7bf39c50bc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Injuries</topic><topic>Position measurement</topic><topic>Pulse measurements</topic><topic>Real time systems</topic><topic>Road accidents</topic><topic>Sensor fusion</topic><topic>System performance</topic><topic>Uncertainty</topic><topic>Vehicle driving</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruijia Feng</creatorcontrib><creatorcontrib>Guangyuan Zhang</creatorcontrib><creatorcontrib>Bo Cheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruijia Feng</au><au>Guangyuan Zhang</au><au>Bo Cheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</atitle><btitle>2009 International Conference on Networking, Sensing and Control</btitle><stitle>ICNSC</stitle><date>2009-03</date><risdate>2009</risdate><spage>897</spage><epage>902</epage><pages>897-902</pages><isbn>9781424434916</isbn><isbn>1424434912</isbn><eisbn>1424434920</eisbn><eisbn>9781424434923</eisbn><abstract>This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.</abstract><pub>IEEE</pub><doi>10.1109/ICNSC.2009.4919399</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424434916
ispartof 2009 International Conference on Networking, Sensing and Control, 2009, p.897-902
issn
language eng
recordid cdi_ieee_primary_4919399
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Injuries
Position measurement
Pulse measurements
Real time systems
Road accidents
Sensor fusion
System performance
Uncertainty
Vehicle driving
title An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20on-board%20system%20for%20detecting%20driver%20drowsiness%20based%20on%20multi-sensor%20data%20fusion%20using%20Dempster-Shafer%20theory&rft.btitle=2009%20International%20Conference%20on%20Networking,%20Sensing%20and%20Control&rft.au=Ruijia%20Feng&rft.date=2009-03&rft.spage=897&rft.epage=902&rft.pages=897-902&rft.isbn=9781424434916&rft.isbn_list=1424434912&rft_id=info:doi/10.1109/ICNSC.2009.4919399&rft.eisbn=1424434920&rft.eisbn_list=9781424434923&rft_dat=%3Cieee_6IE%3E4919399%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-2eea31a3fbc9c0f8d40d79e6690cb94f9e22af7bae617a6f603ca7bf39c50bc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4919399&rfr_iscdi=true