Loading…
An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory
This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A da...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 902 |
container_issue | |
container_start_page | 897 |
container_title | |
container_volume | |
creator | Ruijia Feng Guangyuan Zhang Bo Cheng |
description | This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor. |
doi_str_mv | 10.1109/ICNSC.2009.4919399 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4919399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4919399</ieee_id><sourcerecordid>4919399</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2eea31a3fbc9c0f8d40d79e6690cb94f9e22af7bae617a6f603ca7bf39c50bc93</originalsourceid><addsrcrecordid>eNo1kNtOwzAMhoPQJNjoC8BNXqAlp6bz5VROkya42O6ntHVY0NqOJAPt7QliWLIt2__3X5iQW84KzhncL-vXdV0IxqBQwEECXJApV0IpqUCwS5JBNf-fuZ6QadLOgafUVyQL4YOlUKWoSn5NPhcDHYe8GY3vaDiFiD21o6cdRmyjG95p590XpoUfv4MbMATamIBdomh_3EeXBxzCL2GiofYYXDqkmsgH7A_J0OfrnbHJIu5w9KcbMrFmHzA79xnZPD1u6pd89fa8rBer3AGLuUA0khtpmxZaZuedYl0FqDWwtgFlAYUwtmoMal4ZbTWTrakaK6EtWWLkjNz92TpE3B68640_bc8fkz-xEWBm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruijia Feng ; Guangyuan Zhang ; Bo Cheng</creator><creatorcontrib>Ruijia Feng ; Guangyuan Zhang ; Bo Cheng</creatorcontrib><description>This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.</description><identifier>ISBN: 9781424434916</identifier><identifier>ISBN: 1424434912</identifier><identifier>EISBN: 1424434920</identifier><identifier>EISBN: 9781424434923</identifier><identifier>DOI: 10.1109/ICNSC.2009.4919399</identifier><identifier>LCCN: 2008910896</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Injuries ; Position measurement ; Pulse measurements ; Real time systems ; Road accidents ; Sensor fusion ; System performance ; Uncertainty ; Vehicle driving</subject><ispartof>2009 International Conference on Networking, Sensing and Control, 2009, p.897-902</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4919399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4919399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruijia Feng</creatorcontrib><creatorcontrib>Guangyuan Zhang</creatorcontrib><creatorcontrib>Bo Cheng</creatorcontrib><title>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</title><title>2009 International Conference on Networking, Sensing and Control</title><addtitle>ICNSC</addtitle><description>This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.</description><subject>Computer vision</subject><subject>Injuries</subject><subject>Position measurement</subject><subject>Pulse measurements</subject><subject>Real time systems</subject><subject>Road accidents</subject><subject>Sensor fusion</subject><subject>System performance</subject><subject>Uncertainty</subject><subject>Vehicle driving</subject><isbn>9781424434916</isbn><isbn>1424434912</isbn><isbn>1424434920</isbn><isbn>9781424434923</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtOwzAMhoPQJNjoC8BNXqAlp6bz5VROkya42O6ntHVY0NqOJAPt7QliWLIt2__3X5iQW84KzhncL-vXdV0IxqBQwEECXJApV0IpqUCwS5JBNf-fuZ6QadLOgafUVyQL4YOlUKWoSn5NPhcDHYe8GY3vaDiFiD21o6cdRmyjG95p590XpoUfv4MbMATamIBdomh_3EeXBxzCL2GiofYYXDqkmsgH7A_J0OfrnbHJIu5w9KcbMrFmHzA79xnZPD1u6pd89fa8rBer3AGLuUA0khtpmxZaZuedYl0FqDWwtgFlAYUwtmoMal4ZbTWTrakaK6EtWWLkjNz92TpE3B68640_bc8fkz-xEWBm</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Ruijia Feng</creator><creator>Guangyuan Zhang</creator><creator>Bo Cheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</title><author>Ruijia Feng ; Guangyuan Zhang ; Bo Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2eea31a3fbc9c0f8d40d79e6690cb94f9e22af7bae617a6f603ca7bf39c50bc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer vision</topic><topic>Injuries</topic><topic>Position measurement</topic><topic>Pulse measurements</topic><topic>Real time systems</topic><topic>Road accidents</topic><topic>Sensor fusion</topic><topic>System performance</topic><topic>Uncertainty</topic><topic>Vehicle driving</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruijia Feng</creatorcontrib><creatorcontrib>Guangyuan Zhang</creatorcontrib><creatorcontrib>Bo Cheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruijia Feng</au><au>Guangyuan Zhang</au><au>Bo Cheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory</atitle><btitle>2009 International Conference on Networking, Sensing and Control</btitle><stitle>ICNSC</stitle><date>2009-03</date><risdate>2009</risdate><spage>897</spage><epage>902</epage><pages>897-902</pages><isbn>9781424434916</isbn><isbn>1424434912</isbn><eisbn>1424434920</eisbn><eisbn>9781424434923</eisbn><abstract>This paper presents a data fusion method for the on-board detection of driver drowsiness in real time. Multiple sensors including camera to capture the driver's eye status, angle sensor to measure the driver's steering behavior, and clock to indicate the time on task were implemented. A data fusion framework based on Dempster-Shafer theory is built for modeling and combining the pieces of evidence, and to generate an overall inference of the driver's drowsiness level. The method has been validated in an experiment on a driving simulator. The results suggest that the data fusion process could reduce the uncertainty in the drowsiness inference and obtain a better system performance compared with any single sensor.</abstract><pub>IEEE</pub><doi>10.1109/ICNSC.2009.4919399</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424434916 |
ispartof | 2009 International Conference on Networking, Sensing and Control, 2009, p.897-902 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4919399 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer vision Injuries Position measurement Pulse measurements Real time systems Road accidents Sensor fusion System performance Uncertainty Vehicle driving |
title | An on-board system for detecting driver drowsiness based on multi-sensor data fusion using Dempster-Shafer theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20on-board%20system%20for%20detecting%20driver%20drowsiness%20based%20on%20multi-sensor%20data%20fusion%20using%20Dempster-Shafer%20theory&rft.btitle=2009%20International%20Conference%20on%20Networking,%20Sensing%20and%20Control&rft.au=Ruijia%20Feng&rft.date=2009-03&rft.spage=897&rft.epage=902&rft.pages=897-902&rft.isbn=9781424434916&rft.isbn_list=1424434912&rft_id=info:doi/10.1109/ICNSC.2009.4919399&rft.eisbn=1424434920&rft.eisbn_list=9781424434923&rft_dat=%3Cieee_6IE%3E4919399%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-2eea31a3fbc9c0f8d40d79e6690cb94f9e22af7bae617a6f603ca7bf39c50bc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4919399&rfr_iscdi=true |