Loading…

Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells

Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell...

Full description

Saved in:
Bibliographic Details
Main Authors: Janz, S., Kuenle, M., Lindekugel, S., Mitchell, E.J., Reber, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Janz, S.
Kuenle, M.
Lindekugel, S.
Mitchell, E.J.
Reber, S.
description Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.
doi_str_mv 10.1109/PVSC.2008.4922504
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4922504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4922504</ieee_id><sourcerecordid>4922504</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cf527cabd23a31cc947c23b9a87b0fa8a3e728f02c9ae1334988925ee5f32d343</originalsourceid><addsrcrecordid>eNo1kN1KAzEUhCNasK19APEmL7D15Ge7yWUpWoWCgsXbcpo9oZHsbknWQt_eRevVMMM3czGM3QuYCwH28f3zYzWXAGaurZQl6Cs2EVpqLRZamGs2s5X59wA3bAxiAYVRlRixsdHFkAojb9kk5y8ACWohxswt6xO2jmreHfvgMHLXtT601FDbc2xr7r9Tf6DEQ3NM3ek3z9x3ibt0zj3GOMA8hxiGIu8PoS18iA3PXcSBoRjzHRt5jJlmF52y7fPTdvVSbN7Wr6vlpggW-sL5UlYO97VUqIRzVldOqr1FU-3Bo0FFlTQepLNIQiltjbGyJCq9krXSasoe_mYDEe2OKTSYzrvLV-oHJwRbYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Janz, S. ; Kuenle, M. ; Lindekugel, S. ; Mitchell, E.J. ; Reber, S.</creator><creatorcontrib>Janz, S. ; Kuenle, M. ; Lindekugel, S. ; Mitchell, E.J. ; Reber, S.</creatorcontrib><description>Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.</description><identifier>ISSN: 0160-8371</identifier><identifier>ISBN: 9781424416400</identifier><identifier>ISBN: 142441640X</identifier><identifier>EISBN: 1424416418</identifier><identifier>EISBN: 9781424416417</identifier><identifier>DOI: 10.1109/PVSC.2008.4922504</identifier><identifier>LCCN: 84-640182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coatings ; Conductivity ; Crystallization ; Optical films ; Optical refraction ; Optical variables control ; Passivation ; Photovoltaic cells ; Semiconductor thin films ; Silicon carbide</subject><ispartof>2008 33rd IEEE Photovoltaic Specialists Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4922504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4922504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Janz, S.</creatorcontrib><creatorcontrib>Kuenle, M.</creatorcontrib><creatorcontrib>Lindekugel, S.</creatorcontrib><creatorcontrib>Mitchell, E.J.</creatorcontrib><creatorcontrib>Reber, S.</creatorcontrib><title>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</title><title>2008 33rd IEEE Photovoltaic Specialists Conference</title><addtitle>PVSC</addtitle><description>Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.</description><subject>Coatings</subject><subject>Conductivity</subject><subject>Crystallization</subject><subject>Optical films</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Semiconductor thin films</subject><subject>Silicon carbide</subject><issn>0160-8371</issn><isbn>9781424416400</isbn><isbn>142441640X</isbn><isbn>1424416418</isbn><isbn>9781424416417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KAzEUhCNasK19APEmL7D15Ge7yWUpWoWCgsXbcpo9oZHsbknWQt_eRevVMMM3czGM3QuYCwH28f3zYzWXAGaurZQl6Cs2EVpqLRZamGs2s5X59wA3bAxiAYVRlRixsdHFkAojb9kk5y8ACWohxswt6xO2jmreHfvgMHLXtT601FDbc2xr7r9Tf6DEQ3NM3ek3z9x3ibt0zj3GOMA8hxiGIu8PoS18iA3PXcSBoRjzHRt5jJlmF52y7fPTdvVSbN7Wr6vlpggW-sL5UlYO97VUqIRzVldOqr1FU-3Bo0FFlTQepLNIQiltjbGyJCq9krXSasoe_mYDEe2OKTSYzrvLV-oHJwRbYg</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Janz, S.</creator><creator>Kuenle, M.</creator><creator>Lindekugel, S.</creator><creator>Mitchell, E.J.</creator><creator>Reber, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200805</creationdate><title>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</title><author>Janz, S. ; Kuenle, M. ; Lindekugel, S. ; Mitchell, E.J. ; Reber, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cf527cabd23a31cc947c23b9a87b0fa8a3e728f02c9ae1334988925ee5f32d343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Coatings</topic><topic>Conductivity</topic><topic>Crystallization</topic><topic>Optical films</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Semiconductor thin films</topic><topic>Silicon carbide</topic><toplevel>online_resources</toplevel><creatorcontrib>Janz, S.</creatorcontrib><creatorcontrib>Kuenle, M.</creatorcontrib><creatorcontrib>Lindekugel, S.</creatorcontrib><creatorcontrib>Mitchell, E.J.</creatorcontrib><creatorcontrib>Reber, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Janz, S.</au><au>Kuenle, M.</au><au>Lindekugel, S.</au><au>Mitchell, E.J.</au><au>Reber, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</atitle><btitle>2008 33rd IEEE Photovoltaic Specialists Conference</btitle><stitle>PVSC</stitle><date>2008-05</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0160-8371</issn><isbn>9781424416400</isbn><isbn>142441640X</isbn><eisbn>1424416418</eisbn><eisbn>9781424416417</eisbn><abstract>Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.</abstract><pub>IEEE</pub><doi>10.1109/PVSC.2008.4922504</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0160-8371
ispartof 2008 33rd IEEE Photovoltaic Specialists Conference, 2008, p.1-5
issn 0160-8371
language eng
recordid cdi_ieee_primary_4922504
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Coatings
Conductivity
Crystallization
Optical films
Optical refraction
Optical variables control
Passivation
Photovoltaic cells
Semiconductor thin films
Silicon carbide
title Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20optical%20confinement%20and%20further%20improvements%20for%20crystalline%20silicon%20thin-film%20solar%20cells&rft.btitle=2008%2033rd%20IEEE%20Photovoltaic%20Specialists%20Conference&rft.au=Janz,%20S.&rft.date=2008-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0160-8371&rft.isbn=9781424416400&rft.isbn_list=142441640X&rft_id=info:doi/10.1109/PVSC.2008.4922504&rft.eisbn=1424416418&rft.eisbn_list=9781424416417&rft_dat=%3Cieee_6IE%3E4922504%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-cf527cabd23a31cc947c23b9a87b0fa8a3e728f02c9ae1334988925ee5f32d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4922504&rfr_iscdi=true