Loading…
Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells
Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Janz, S. Kuenle, M. Lindekugel, S. Mitchell, E.J. Reber, S. |
description | Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%. |
doi_str_mv | 10.1109/PVSC.2008.4922504 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4922504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4922504</ieee_id><sourcerecordid>4922504</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cf527cabd23a31cc947c23b9a87b0fa8a3e728f02c9ae1334988925ee5f32d343</originalsourceid><addsrcrecordid>eNo1kN1KAzEUhCNasK19APEmL7D15Ge7yWUpWoWCgsXbcpo9oZHsbknWQt_eRevVMMM3czGM3QuYCwH28f3zYzWXAGaurZQl6Cs2EVpqLRZamGs2s5X59wA3bAxiAYVRlRixsdHFkAojb9kk5y8ACWohxswt6xO2jmreHfvgMHLXtT601FDbc2xr7r9Tf6DEQ3NM3ek3z9x3ibt0zj3GOMA8hxiGIu8PoS18iA3PXcSBoRjzHRt5jJlmF52y7fPTdvVSbN7Wr6vlpggW-sL5UlYO97VUqIRzVldOqr1FU-3Bo0FFlTQepLNIQiltjbGyJCq9krXSasoe_mYDEe2OKTSYzrvLV-oHJwRbYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Janz, S. ; Kuenle, M. ; Lindekugel, S. ; Mitchell, E.J. ; Reber, S.</creator><creatorcontrib>Janz, S. ; Kuenle, M. ; Lindekugel, S. ; Mitchell, E.J. ; Reber, S.</creatorcontrib><description>Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.</description><identifier>ISSN: 0160-8371</identifier><identifier>ISBN: 9781424416400</identifier><identifier>ISBN: 142441640X</identifier><identifier>EISBN: 1424416418</identifier><identifier>EISBN: 9781424416417</identifier><identifier>DOI: 10.1109/PVSC.2008.4922504</identifier><identifier>LCCN: 84-640182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coatings ; Conductivity ; Crystallization ; Optical films ; Optical refraction ; Optical variables control ; Passivation ; Photovoltaic cells ; Semiconductor thin films ; Silicon carbide</subject><ispartof>2008 33rd IEEE Photovoltaic Specialists Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4922504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4922504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Janz, S.</creatorcontrib><creatorcontrib>Kuenle, M.</creatorcontrib><creatorcontrib>Lindekugel, S.</creatorcontrib><creatorcontrib>Mitchell, E.J.</creatorcontrib><creatorcontrib>Reber, S.</creatorcontrib><title>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</title><title>2008 33rd IEEE Photovoltaic Specialists Conference</title><addtitle>PVSC</addtitle><description>Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.</description><subject>Coatings</subject><subject>Conductivity</subject><subject>Crystallization</subject><subject>Optical films</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Semiconductor thin films</subject><subject>Silicon carbide</subject><issn>0160-8371</issn><isbn>9781424416400</isbn><isbn>142441640X</isbn><isbn>1424416418</isbn><isbn>9781424416417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1KAzEUhCNasK19APEmL7D15Ge7yWUpWoWCgsXbcpo9oZHsbknWQt_eRevVMMM3czGM3QuYCwH28f3zYzWXAGaurZQl6Cs2EVpqLRZamGs2s5X59wA3bAxiAYVRlRixsdHFkAojb9kk5y8ACWohxswt6xO2jmreHfvgMHLXtT601FDbc2xr7r9Tf6DEQ3NM3ek3z9x3ibt0zj3GOMA8hxiGIu8PoS18iA3PXcSBoRjzHRt5jJlmF52y7fPTdvVSbN7Wr6vlpggW-sL5UlYO97VUqIRzVldOqr1FU-3Bo0FFlTQepLNIQiltjbGyJCq9krXSasoe_mYDEe2OKTSYzrvLV-oHJwRbYg</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Janz, S.</creator><creator>Kuenle, M.</creator><creator>Lindekugel, S.</creator><creator>Mitchell, E.J.</creator><creator>Reber, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200805</creationdate><title>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</title><author>Janz, S. ; Kuenle, M. ; Lindekugel, S. ; Mitchell, E.J. ; Reber, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cf527cabd23a31cc947c23b9a87b0fa8a3e728f02c9ae1334988925ee5f32d343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Coatings</topic><topic>Conductivity</topic><topic>Crystallization</topic><topic>Optical films</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Semiconductor thin films</topic><topic>Silicon carbide</topic><toplevel>online_resources</toplevel><creatorcontrib>Janz, S.</creatorcontrib><creatorcontrib>Kuenle, M.</creatorcontrib><creatorcontrib>Lindekugel, S.</creatorcontrib><creatorcontrib>Mitchell, E.J.</creatorcontrib><creatorcontrib>Reber, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Janz, S.</au><au>Kuenle, M.</au><au>Lindekugel, S.</au><au>Mitchell, E.J.</au><au>Reber, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells</atitle><btitle>2008 33rd IEEE Photovoltaic Specialists Conference</btitle><stitle>PVSC</stitle><date>2008-05</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0160-8371</issn><isbn>9781424416400</isbn><isbn>142441640X</isbn><eisbn>1424416418</eisbn><eisbn>9781424416417</eisbn><abstract>Every silicon thin-film solar cell concept is dependent on an excellent optical confinement. As well as texturisation and an anti-reflection coating on the front side, the rear-side needs a reflector for the wavelength region exceeding 600 nm to enhance the long-wavelength response of the solar cell. In our Recrystallised Wafer Equivalent (RexWE) [1] the rear-side of the silicon layer is not accessible during the solar cell process. Therefore, several important features have to be implemented via an intermediate layer: it needs to act as a diffusion barrier of sufficiently high electrical conductivity, an excellent optical reflector, and ideally also as a passivation layer for interface defects. We try to satisfy these requirements with a specially designed reflector. It consists of SiC and SiO 2 layers with alternating refractive indices and varying characteristics that can be realised by changing the stoichiometry and layer network. These layer-stacks were implemented into RexWE solar cells by a process sequence including thermal annealing, Si seeding layer deposition, recrystallisation and epitaxial Si growth. To surmount the lack of electrical conductivity of the SiO 2 layers we drilled holes through the stacks using a laser. We call this process laser-fired rear access (LFA). The best solar cell incorporating the SiC/SiO 2 reflector shows a J sc of 26.3 mA/cm 2 (with front side plasma texture) which constitutes an enhancement of 4 mA/cm 2 compared with a single SiC layer. The cell efficiency was thereby increased from 8.8% to 11.1%.</abstract><pub>IEEE</pub><doi>10.1109/PVSC.2008.4922504</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0160-8371 |
ispartof | 2008 33rd IEEE Photovoltaic Specialists Conference, 2008, p.1-5 |
issn | 0160-8371 |
language | eng |
recordid | cdi_ieee_primary_4922504 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Coatings Conductivity Crystallization Optical films Optical refraction Optical variables control Passivation Photovoltaic cells Semiconductor thin films Silicon carbide |
title | Advanced optical confinement and further improvements for crystalline silicon thin-film solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20optical%20confinement%20and%20further%20improvements%20for%20crystalline%20silicon%20thin-film%20solar%20cells&rft.btitle=2008%2033rd%20IEEE%20Photovoltaic%20Specialists%20Conference&rft.au=Janz,%20S.&rft.date=2008-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0160-8371&rft.isbn=9781424416400&rft.isbn_list=142441640X&rft_id=info:doi/10.1109/PVSC.2008.4922504&rft.eisbn=1424416418&rft.eisbn_list=9781424416417&rft_dat=%3Cieee_6IE%3E4922504%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-cf527cabd23a31cc947c23b9a87b0fa8a3e728f02c9ae1334988925ee5f32d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4922504&rfr_iscdi=true |