Loading…

The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm

The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the m...

Full description

Saved in:
Bibliographic Details
Main Authors: Shi Lianshuan, Yuan Liang, Li Zengyan, Dai Yi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 449
container_issue
container_start_page 446
container_title
container_volume 1
creator Shi Lianshuan
Yuan Liang
Li Zengyan
Dai Yi
description The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.
doi_str_mv 10.1109/ETCS.2009.108
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4958811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4958811</ieee_id><sourcerecordid>4958811</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c35bee5b9eed5945ef2de83f2f9f3e907ca3855ca0cdd079a72b341cec321f5b3</originalsourceid><addsrcrecordid>eNotj89LwzAcxQMy0M0dPXnJP9CanzY5zqlTmE7oPI8k_abLbBtp44b_vRV9lwePD4_3ELqiJKeU6JuH7bLMGSE6p0SdoSkVTAguFaUTNB1zpQW7VfwczYfhQEYJyYWSF6jc7gGXsTmGrsbR45evJoVsYw_gUjgCfoV0iv0Hvoch1N0v9NZH20CL78wAFY4dXkEHKTi8aOrYh7RvL9HEm2aA-b_P0PvjOPApW29Wz8vFOgu0kClzXFoAaTVAJbWQ4FkFinvmteegSeEMV1I6Q1xVkUKbglkuqAPHGfXS8hm6_usNALD77ENr-u-d0FKNv_kPvkpQbw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shi Lianshuan ; Yuan Liang ; Li Zengyan ; Dai Yi</creator><creatorcontrib>Shi Lianshuan ; Yuan Liang ; Li Zengyan ; Dai Yi</creatorcontrib><description>The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.</description><identifier>ISBN: 1424435811</identifier><identifier>ISBN: 9781424435814</identifier><identifier>ISBN: 0769535577</identifier><identifier>ISBN: 9780769535579</identifier><identifier>DOI: 10.1109/ETCS.2009.108</identifier><identifier>LCCN: 2008942683</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological cells ; Computer networks ; Computer science education ; Costs ; Delay ; Educational technology ; Evolution (biology) ; Genetic algorithm ; Genetic algorithms ; Mathematical model ; Multi-Objective optimization ; Network optimization</subject><ispartof>2009 First International Workshop on Education Technology and Computer Science, 2009, Vol.1, p.446-449</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4958811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4958811$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi Lianshuan</creatorcontrib><creatorcontrib>Yuan Liang</creatorcontrib><creatorcontrib>Li Zengyan</creatorcontrib><creatorcontrib>Dai Yi</creatorcontrib><title>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</title><title>2009 First International Workshop on Education Technology and Computer Science</title><addtitle>ETCS</addtitle><description>The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.</description><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Computer networks</subject><subject>Computer science education</subject><subject>Costs</subject><subject>Delay</subject><subject>Educational technology</subject><subject>Evolution (biology)</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Multi-Objective optimization</subject><subject>Network optimization</subject><isbn>1424435811</isbn><isbn>9781424435814</isbn><isbn>0769535577</isbn><isbn>9780769535579</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj89LwzAcxQMy0M0dPXnJP9CanzY5zqlTmE7oPI8k_abLbBtp44b_vRV9lwePD4_3ELqiJKeU6JuH7bLMGSE6p0SdoSkVTAguFaUTNB1zpQW7VfwczYfhQEYJyYWSF6jc7gGXsTmGrsbR45evJoVsYw_gUjgCfoV0iv0Hvoch1N0v9NZH20CL78wAFY4dXkEHKTi8aOrYh7RvL9HEm2aA-b_P0PvjOPApW29Wz8vFOgu0kClzXFoAaTVAJbWQ4FkFinvmteegSeEMV1I6Q1xVkUKbglkuqAPHGfXS8hm6_usNALD77ENr-u-d0FKNv_kPvkpQbw</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Shi Lianshuan</creator><creator>Yuan Liang</creator><creator>Li Zengyan</creator><creator>Dai Yi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</title><author>Shi Lianshuan ; Yuan Liang ; Li Zengyan ; Dai Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c35bee5b9eed5945ef2de83f2f9f3e907ca3855ca0cdd079a72b341cec321f5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Computer networks</topic><topic>Computer science education</topic><topic>Costs</topic><topic>Delay</topic><topic>Educational technology</topic><topic>Evolution (biology)</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Multi-Objective optimization</topic><topic>Network optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi Lianshuan</creatorcontrib><creatorcontrib>Yuan Liang</creatorcontrib><creatorcontrib>Li Zengyan</creatorcontrib><creatorcontrib>Dai Yi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi Lianshuan</au><au>Yuan Liang</au><au>Li Zengyan</au><au>Dai Yi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</atitle><btitle>2009 First International Workshop on Education Technology and Computer Science</btitle><stitle>ETCS</stitle><date>2009-03</date><risdate>2009</risdate><volume>1</volume><spage>446</spage><epage>449</epage><pages>446-449</pages><isbn>1424435811</isbn><isbn>9781424435814</isbn><isbn>0769535577</isbn><isbn>9780769535579</isbn><abstract>The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ETCS.2009.108</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424435811
ispartof 2009 First International Workshop on Education Technology and Computer Science, 2009, Vol.1, p.446-449
issn
language eng
recordid cdi_ieee_primary_4958811
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological cells
Computer networks
Computer science education
Costs
Delay
Educational technology
Evolution (biology)
Genetic algorithm
Genetic algorithms
Mathematical model
Multi-Objective optimization
Network optimization
title The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Solving%20of%20Multi-Objective%20Network%20Designing%20Problem%20Based%20on%20Genetic%20Algorithm&rft.btitle=2009%20First%20International%20Workshop%20on%20Education%20Technology%20and%20Computer%20Science&rft.au=Shi%20Lianshuan&rft.date=2009-03&rft.volume=1&rft.spage=446&rft.epage=449&rft.pages=446-449&rft.isbn=1424435811&rft.isbn_list=9781424435814&rft.isbn_list=0769535577&rft.isbn_list=9780769535579&rft_id=info:doi/10.1109/ETCS.2009.108&rft_dat=%3Cieee_6IE%3E4958811%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c35bee5b9eed5945ef2de83f2f9f3e907ca3855ca0cdd079a72b341cec321f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4958811&rfr_iscdi=true