Loading…
The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm
The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 449 |
container_issue | |
container_start_page | 446 |
container_title | |
container_volume | 1 |
creator | Shi Lianshuan Yuan Liang Li Zengyan Dai Yi |
description | The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy. |
doi_str_mv | 10.1109/ETCS.2009.108 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4958811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4958811</ieee_id><sourcerecordid>4958811</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c35bee5b9eed5945ef2de83f2f9f3e907ca3855ca0cdd079a72b341cec321f5b3</originalsourceid><addsrcrecordid>eNotj89LwzAcxQMy0M0dPXnJP9CanzY5zqlTmE7oPI8k_abLbBtp44b_vRV9lwePD4_3ELqiJKeU6JuH7bLMGSE6p0SdoSkVTAguFaUTNB1zpQW7VfwczYfhQEYJyYWSF6jc7gGXsTmGrsbR45evJoVsYw_gUjgCfoV0iv0Hvoch1N0v9NZH20CL78wAFY4dXkEHKTi8aOrYh7RvL9HEm2aA-b_P0PvjOPApW29Wz8vFOgu0kClzXFoAaTVAJbWQ4FkFinvmteegSeEMV1I6Q1xVkUKbglkuqAPHGfXS8hm6_usNALD77ENr-u-d0FKNv_kPvkpQbw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shi Lianshuan ; Yuan Liang ; Li Zengyan ; Dai Yi</creator><creatorcontrib>Shi Lianshuan ; Yuan Liang ; Li Zengyan ; Dai Yi</creatorcontrib><description>The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.</description><identifier>ISBN: 1424435811</identifier><identifier>ISBN: 9781424435814</identifier><identifier>ISBN: 0769535577</identifier><identifier>ISBN: 9780769535579</identifier><identifier>DOI: 10.1109/ETCS.2009.108</identifier><identifier>LCCN: 2008942683</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological cells ; Computer networks ; Computer science education ; Costs ; Delay ; Educational technology ; Evolution (biology) ; Genetic algorithm ; Genetic algorithms ; Mathematical model ; Multi-Objective optimization ; Network optimization</subject><ispartof>2009 First International Workshop on Education Technology and Computer Science, 2009, Vol.1, p.446-449</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4958811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4958811$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi Lianshuan</creatorcontrib><creatorcontrib>Yuan Liang</creatorcontrib><creatorcontrib>Li Zengyan</creatorcontrib><creatorcontrib>Dai Yi</creatorcontrib><title>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</title><title>2009 First International Workshop on Education Technology and Computer Science</title><addtitle>ETCS</addtitle><description>The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.</description><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Computer networks</subject><subject>Computer science education</subject><subject>Costs</subject><subject>Delay</subject><subject>Educational technology</subject><subject>Evolution (biology)</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Multi-Objective optimization</subject><subject>Network optimization</subject><isbn>1424435811</isbn><isbn>9781424435814</isbn><isbn>0769535577</isbn><isbn>9780769535579</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj89LwzAcxQMy0M0dPXnJP9CanzY5zqlTmE7oPI8k_abLbBtp44b_vRV9lwePD4_3ELqiJKeU6JuH7bLMGSE6p0SdoSkVTAguFaUTNB1zpQW7VfwczYfhQEYJyYWSF6jc7gGXsTmGrsbR45evJoVsYw_gUjgCfoV0iv0Hvoch1N0v9NZH20CL78wAFY4dXkEHKTi8aOrYh7RvL9HEm2aA-b_P0PvjOPApW29Wz8vFOgu0kClzXFoAaTVAJbWQ4FkFinvmteegSeEMV1I6Q1xVkUKbglkuqAPHGfXS8hm6_usNALD77ENr-u-d0FKNv_kPvkpQbw</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Shi Lianshuan</creator><creator>Yuan Liang</creator><creator>Li Zengyan</creator><creator>Dai Yi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</title><author>Shi Lianshuan ; Yuan Liang ; Li Zengyan ; Dai Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c35bee5b9eed5945ef2de83f2f9f3e907ca3855ca0cdd079a72b341cec321f5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Computer networks</topic><topic>Computer science education</topic><topic>Costs</topic><topic>Delay</topic><topic>Educational technology</topic><topic>Evolution (biology)</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Multi-Objective optimization</topic><topic>Network optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi Lianshuan</creatorcontrib><creatorcontrib>Yuan Liang</creatorcontrib><creatorcontrib>Li Zengyan</creatorcontrib><creatorcontrib>Dai Yi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi Lianshuan</au><au>Yuan Liang</au><au>Li Zengyan</au><au>Dai Yi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm</atitle><btitle>2009 First International Workshop on Education Technology and Computer Science</btitle><stitle>ETCS</stitle><date>2009-03</date><risdate>2009</risdate><volume>1</volume><spage>446</spage><epage>449</epage><pages>446-449</pages><isbn>1424435811</isbn><isbn>9781424435814</isbn><isbn>0769535577</isbn><isbn>9780769535579</isbn><abstract>The genetic algorithm is used to solve the multi-objective networks design problem that requires selecting a best route to make a balance with cost and delay of the route. Firstly, the mathematical model of the problem is given, then the nondominated sorting generate algorithm is used to solve the model. The algorithm uses coding method with integer to form chromosomes and an initial population is generated randomly that satisfies all constraints. In selecting process, two objective-value delay and cost are calculated, the chromosomes are ranked according to the objective value, then the better chromosomes is selected for the crossover processing by the roulette method. The single point crossover based on deleting the cricoidpsilas genes is used in crossover process. Several examples of network design are given and the computing result shows that the approximate global optimal solution of the problem can be quickly obtained, and the solutions are obtained with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ETCS.2009.108</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424435811 |
ispartof | 2009 First International Workshop on Education Technology and Computer Science, 2009, Vol.1, p.446-449 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4958811 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Biological cells Computer networks Computer science education Costs Delay Educational technology Evolution (biology) Genetic algorithm Genetic algorithms Mathematical model Multi-Objective optimization Network optimization |
title | The Solving of Multi-Objective Network Designing Problem Based on Genetic Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Solving%20of%20Multi-Objective%20Network%20Designing%20Problem%20Based%20on%20Genetic%20Algorithm&rft.btitle=2009%20First%20International%20Workshop%20on%20Education%20Technology%20and%20Computer%20Science&rft.au=Shi%20Lianshuan&rft.date=2009-03&rft.volume=1&rft.spage=446&rft.epage=449&rft.pages=446-449&rft.isbn=1424435811&rft.isbn_list=9781424435814&rft.isbn_list=0769535577&rft.isbn_list=9780769535579&rft_id=info:doi/10.1109/ETCS.2009.108&rft_dat=%3Cieee_6IE%3E4958811%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c35bee5b9eed5945ef2de83f2f9f3e907ca3855ca0cdd079a72b341cec321f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4958811&rfr_iscdi=true |