Loading…

General hybrid column generation algorithm for crew scheduling problems using genetic algorithm

This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasi...

Full description

Saved in:
Bibliographic Details
Main Authors: dos Santos, A.G., Mateus, G.R.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3
cites
container_end_page 1806
container_issue
container_start_page 1799
container_title
container_volume
creator dos Santos, A.G.
Mateus, G.R.
description This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.
doi_str_mv 10.1109/CEC.2009.4983159
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4983159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983159</ieee_id><sourcerecordid>4983159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhONHwbZ6F7zkD2zN527eoyxtFQpeFLyVJPumjexHyW6R_ntbLfQ0zDzMHIaQR85mnDN4LuflTDAGMwVGcg1XZMKVUEqABn1NxhwUzxgT-c0FmOL2CJiBrCjM14hMjgMGmCkk3JFJ338zxpXmMCbrJbaYbE23B5diRX1X75uWbv7SIXYttfWmS3HYNjR0ifqEP7T3W6z2dWw3dJc6V2PT031_sqfeEP2ldE9GwdY9Ppx1Sj4X84_yNVu9L9_Kl1XmhRBDFpR3qHVl8xycBWkcBifRB2600x4ClzkKhBxkbhn3ylnBtWVKuMqEwsspefrfjYi43qXY2HRYny-Tv6wWXC0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</title><source>IEEE Xplore All Conference Series</source><creator>dos Santos, A.G. ; Mateus, G.R.</creator><creatorcontrib>dos Santos, A.G. ; Mateus, G.R.</creatorcontrib><description>This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983159</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Base stations ; Cost function ; Genetic algorithms ; Hybrid power systems ; Integer linear programming ; Linear programming ; Mathematical model ; NP-hard problem ; Partitioning algorithms ; Scheduling algorithm</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.1799-1806</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>dos Santos, A.G.</creatorcontrib><creatorcontrib>Mateus, G.R.</creatorcontrib><title>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.</description><subject>Base stations</subject><subject>Cost function</subject><subject>Genetic algorithms</subject><subject>Hybrid power systems</subject><subject>Integer linear programming</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>NP-hard problem</subject><subject>Partitioning algorithms</subject><subject>Scheduling algorithm</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkE1LAzEYhONHwbZ6F7zkD2zN527eoyxtFQpeFLyVJPumjexHyW6R_ntbLfQ0zDzMHIaQR85mnDN4LuflTDAGMwVGcg1XZMKVUEqABn1NxhwUzxgT-c0FmOL2CJiBrCjM14hMjgMGmCkk3JFJ338zxpXmMCbrJbaYbE23B5diRX1X75uWbv7SIXYttfWmS3HYNjR0ifqEP7T3W6z2dWw3dJc6V2PT031_sqfeEP2ldE9GwdY9Ppx1Sj4X84_yNVu9L9_Kl1XmhRBDFpR3qHVl8xycBWkcBifRB2600x4ClzkKhBxkbhn3ylnBtWVKuMqEwsspefrfjYi43qXY2HRYny-Tv6wWXC0</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>dos Santos, A.G.</creator><creator>Mateus, G.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</title><author>dos Santos, A.G. ; Mateus, G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Base stations</topic><topic>Cost function</topic><topic>Genetic algorithms</topic><topic>Hybrid power systems</topic><topic>Integer linear programming</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>NP-hard problem</topic><topic>Partitioning algorithms</topic><topic>Scheduling algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, A.G.</creatorcontrib><creatorcontrib>Mateus, G.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>dos Santos, A.G.</au><au>Mateus, G.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>1799</spage><epage>1806</epage><pages>1799-1806</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983159</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.1799-1806
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4983159
source IEEE Xplore All Conference Series
subjects Base stations
Cost function
Genetic algorithms
Hybrid power systems
Integer linear programming
Linear programming
Mathematical model
NP-hard problem
Partitioning algorithms
Scheduling algorithm
title General hybrid column generation algorithm for crew scheduling problems using genetic algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=General%20hybrid%20column%20generation%20algorithm%20for%20crew%20scheduling%20problems%20using%20genetic%20algorithm&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=dos%20Santos,%20A.G.&rft.date=2009-05&rft.spage=1799&rft.epage=1806&rft.pages=1799-1806&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983159&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&rft_dat=%3Cieee_CHZPO%3E4983159%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983159&rfr_iscdi=true