Loading…
General hybrid column generation algorithm for crew scheduling problems using genetic algorithm
This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3 |
---|---|
cites | |
container_end_page | 1806 |
container_issue | |
container_start_page | 1799 |
container_title | |
container_volume | |
creator | dos Santos, A.G. Mateus, G.R. |
description | This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics. |
doi_str_mv | 10.1109/CEC.2009.4983159 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4983159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983159</ieee_id><sourcerecordid>4983159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhONHwbZ6F7zkD2zN527eoyxtFQpeFLyVJPumjexHyW6R_ntbLfQ0zDzMHIaQR85mnDN4LuflTDAGMwVGcg1XZMKVUEqABn1NxhwUzxgT-c0FmOL2CJiBrCjM14hMjgMGmCkk3JFJ338zxpXmMCbrJbaYbE23B5diRX1X75uWbv7SIXYttfWmS3HYNjR0ifqEP7T3W6z2dWw3dJc6V2PT031_sqfeEP2ldE9GwdY9Ppx1Sj4X84_yNVu9L9_Kl1XmhRBDFpR3qHVl8xycBWkcBifRB2600x4ClzkKhBxkbhn3ylnBtWVKuMqEwsspefrfjYi43qXY2HRYny-Tv6wWXC0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</title><source>IEEE Xplore All Conference Series</source><creator>dos Santos, A.G. ; Mateus, G.R.</creator><creatorcontrib>dos Santos, A.G. ; Mateus, G.R.</creatorcontrib><description>This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983159</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Base stations ; Cost function ; Genetic algorithms ; Hybrid power systems ; Integer linear programming ; Linear programming ; Mathematical model ; NP-hard problem ; Partitioning algorithms ; Scheduling algorithm</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.1799-1806</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>dos Santos, A.G.</creatorcontrib><creatorcontrib>Mateus, G.R.</creatorcontrib><title>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.</description><subject>Base stations</subject><subject>Cost function</subject><subject>Genetic algorithms</subject><subject>Hybrid power systems</subject><subject>Integer linear programming</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>NP-hard problem</subject><subject>Partitioning algorithms</subject><subject>Scheduling algorithm</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkE1LAzEYhONHwbZ6F7zkD2zN527eoyxtFQpeFLyVJPumjexHyW6R_ntbLfQ0zDzMHIaQR85mnDN4LuflTDAGMwVGcg1XZMKVUEqABn1NxhwUzxgT-c0FmOL2CJiBrCjM14hMjgMGmCkk3JFJ338zxpXmMCbrJbaYbE23B5diRX1X75uWbv7SIXYttfWmS3HYNjR0ifqEP7T3W6z2dWw3dJc6V2PT031_sqfeEP2ldE9GwdY9Ppx1Sj4X84_yNVu9L9_Kl1XmhRBDFpR3qHVl8xycBWkcBifRB2600x4ClzkKhBxkbhn3ylnBtWVKuMqEwsspefrfjYi43qXY2HRYny-Tv6wWXC0</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>dos Santos, A.G.</creator><creator>Mateus, G.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</title><author>dos Santos, A.G. ; Mateus, G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Base stations</topic><topic>Cost function</topic><topic>Genetic algorithms</topic><topic>Hybrid power systems</topic><topic>Integer linear programming</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>NP-hard problem</topic><topic>Partitioning algorithms</topic><topic>Scheduling algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, A.G.</creatorcontrib><creatorcontrib>Mateus, G.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>dos Santos, A.G.</au><au>Mateus, G.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>General hybrid column generation algorithm for crew scheduling problems using genetic algorithm</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>1799</spage><epage>1806</epage><pages>1799-1806</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>This paper describes a general hybrid column generation algorithm for crew scheduling problems, using genetic algorithm to speed up the generation of new columns, combined with an integer programming exact method to assure optimality. The subproblem of the column generation must generate a new feasible set of tasks to be assigned to a crew member. It is modeled as a shortest path with resource constraints problem in a graph, which virtually can be applied to all kinds of crew scheduling problems. The genetic algorithm is also general, and knowledge about specific problems may be incorporated. The hybrid algorithm is tested with instances from the literature and also with real instances, and the results show that the genetic algorithm is able to quickly generate most of the columns needed to solve the problem, while the exact method generates the last columns to find the optimal solution. The algorithm can also incorporate other kind of heuristics.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983159</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2009 IEEE Congress on Evolutionary Computation, 2009, p.1799-1806 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_4983159 |
source | IEEE Xplore All Conference Series |
subjects | Base stations Cost function Genetic algorithms Hybrid power systems Integer linear programming Linear programming Mathematical model NP-hard problem Partitioning algorithms Scheduling algorithm |
title | General hybrid column generation algorithm for crew scheduling problems using genetic algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=General%20hybrid%20column%20generation%20algorithm%20for%20crew%20scheduling%20problems%20using%20genetic%20algorithm&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=dos%20Santos,%20A.G.&rft.date=2009-05&rft.spage=1799&rft.epage=1806&rft.pages=1799-1806&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983159&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&rft_dat=%3Cieee_CHZPO%3E4983159%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-f4cbe55da669ba938befb3ecf185b5c9f136e2e96936a01c4ba215a042bd8f7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983159&rfr_iscdi=true |