Loading…
Dialectical non-supervised image classification
The materialist dialectical method is a philosophical investigative method to analyze aspects of reality as complex processes composed by integrating units named poles. Dialectics has experienced considerable progress in the 19th century, with Hegel's dialectics and, in the 20th century, with t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2487 |
container_issue | |
container_start_page | 2480 |
container_title | |
container_volume | |
creator | dos Santos, W.P. de Assis, F.M. de Souza, R.E. Mendes, P.B. Monteiro, H.S.S. Alves, H.D. |
description | The materialist dialectical method is a philosophical investigative method to analyze aspects of reality as complex processes composed by integrating units named poles. Dialectics has experienced considerable progress in the 19th century, with Hegel's dialectics and, in the 20th century, with the works of Marx, Engels, and Gramsci, in philosophy and economics. The movement of poles through their contradictions is viewed as a dynamic process with intertwined phases of evolution and revolutionary crisis. Santos et al. introduced the objective dialectical classifier (ODC), a non-supervised self-organized map for classification. As a case study, we used ODC to classify 181 magnetic resonance synthetic multispectral images composed by proton density, T 1 - and T 2 -weighted synthetic brain images. Comparing ODC to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning with image fidelity indexes as estimatives of quantization distortion, we proved that ODC can reach the same quantization performance as optimal non-supervised classifiers like Kohonen's self-organized maps. |
doi_str_mv | 10.1109/CEC.2009.4983252 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4983252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983252</ieee_id><sourcerecordid>4983252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-32ce8f4f2fc51b107225b1d7671f2af90b218654b8da0c2b6ef2cd538bf901003</originalsourceid><addsrcrecordid>eNpFkEtLxDAUheNjwOnoXnDTP5DOvTdJkyyljg8YcKPgbkjTRCK1MzRV8N9bcMDVWXyHj8Nh7BqhQgS7bjZNRQC2ktYIUnTCCpQkJVll1SlbopXIAag--wdGn88AjOVam7cFK2aBsWC0sBesyPkDAKVCu2Tru-T64KfkXV8O-4Hnr0MYv1MOXZk-3Xsofe9yTnEuTGk_XLJFdH0OV8dcsdf7zUvzyLfPD0_N7ZYn1GrignwwUUaKXmGLoIlUi52uNUZy0UJLaGolW9M58NTWIZLvlDDtzBBArNjNnzeFEHaHcd4y_uyOF4hfKOtIxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dialectical non-supervised image classification</title><source>IEEE Xplore All Conference Series</source><creator>dos Santos, W.P. ; de Assis, F.M. ; de Souza, R.E. ; Mendes, P.B. ; Monteiro, H.S.S. ; Alves, H.D.</creator><creatorcontrib>dos Santos, W.P. ; de Assis, F.M. ; de Souza, R.E. ; Mendes, P.B. ; Monteiro, H.S.S. ; Alves, H.D.</creatorcontrib><description>The materialist dialectical method is a philosophical investigative method to analyze aspects of reality as complex processes composed by integrating units named poles. Dialectics has experienced considerable progress in the 19th century, with Hegel's dialectics and, in the 20th century, with the works of Marx, Engels, and Gramsci, in philosophy and economics. The movement of poles through their contradictions is viewed as a dynamic process with intertwined phases of evolution and revolutionary crisis. Santos et al. introduced the objective dialectical classifier (ODC), a non-supervised self-organized map for classification. As a case study, we used ODC to classify 181 magnetic resonance synthetic multispectral images composed by proton density, T 1 - and T 2 -weighted synthetic brain images. Comparing ODC to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning with image fidelity indexes as estimatives of quantization distortion, we proved that ODC can reach the same quantization performance as optimal non-supervised classifiers like Kohonen's self-organized maps.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983252</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; Brain modeling ; Computational intelligence ; Computer networks ; Image classification ; Magnetic resonance ; Multispectral imaging ; Pattern recognition ; Protons ; Quantization</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.2480-2487</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54794,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>dos Santos, W.P.</creatorcontrib><creatorcontrib>de Assis, F.M.</creatorcontrib><creatorcontrib>de Souza, R.E.</creatorcontrib><creatorcontrib>Mendes, P.B.</creatorcontrib><creatorcontrib>Monteiro, H.S.S.</creatorcontrib><creatorcontrib>Alves, H.D.</creatorcontrib><title>Dialectical non-supervised image classification</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The materialist dialectical method is a philosophical investigative method to analyze aspects of reality as complex processes composed by integrating units named poles. Dialectics has experienced considerable progress in the 19th century, with Hegel's dialectics and, in the 20th century, with the works of Marx, Engels, and Gramsci, in philosophy and economics. The movement of poles through their contradictions is viewed as a dynamic process with intertwined phases of evolution and revolutionary crisis. Santos et al. introduced the objective dialectical classifier (ODC), a non-supervised self-organized map for classification. As a case study, we used ODC to classify 181 magnetic resonance synthetic multispectral images composed by proton density, T 1 - and T 2 -weighted synthetic brain images. Comparing ODC to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning with image fidelity indexes as estimatives of quantization distortion, we proved that ODC can reach the same quantization performance as optimal non-supervised classifiers like Kohonen's self-organized maps.</description><subject>Biological neural networks</subject><subject>Brain modeling</subject><subject>Computational intelligence</subject><subject>Computer networks</subject><subject>Image classification</subject><subject>Magnetic resonance</subject><subject>Multispectral imaging</subject><subject>Pattern recognition</subject><subject>Protons</subject><subject>Quantization</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtLxDAUheNjwOnoXnDTP5DOvTdJkyyljg8YcKPgbkjTRCK1MzRV8N9bcMDVWXyHj8Nh7BqhQgS7bjZNRQC2ktYIUnTCCpQkJVll1SlbopXIAag--wdGn88AjOVam7cFK2aBsWC0sBesyPkDAKVCu2Tru-T64KfkXV8O-4Hnr0MYv1MOXZk-3Xsofe9yTnEuTGk_XLJFdH0OV8dcsdf7zUvzyLfPD0_N7ZYn1GrignwwUUaKXmGLoIlUi52uNUZy0UJLaGolW9M58NTWIZLvlDDtzBBArNjNnzeFEHaHcd4y_uyOF4hfKOtIxA</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>dos Santos, W.P.</creator><creator>de Assis, F.M.</creator><creator>de Souza, R.E.</creator><creator>Mendes, P.B.</creator><creator>Monteiro, H.S.S.</creator><creator>Alves, H.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Dialectical non-supervised image classification</title><author>dos Santos, W.P. ; de Assis, F.M. ; de Souza, R.E. ; Mendes, P.B. ; Monteiro, H.S.S. ; Alves, H.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-32ce8f4f2fc51b107225b1d7671f2af90b218654b8da0c2b6ef2cd538bf901003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological neural networks</topic><topic>Brain modeling</topic><topic>Computational intelligence</topic><topic>Computer networks</topic><topic>Image classification</topic><topic>Magnetic resonance</topic><topic>Multispectral imaging</topic><topic>Pattern recognition</topic><topic>Protons</topic><topic>Quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, W.P.</creatorcontrib><creatorcontrib>de Assis, F.M.</creatorcontrib><creatorcontrib>de Souza, R.E.</creatorcontrib><creatorcontrib>Mendes, P.B.</creatorcontrib><creatorcontrib>Monteiro, H.S.S.</creatorcontrib><creatorcontrib>Alves, H.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>dos Santos, W.P.</au><au>de Assis, F.M.</au><au>de Souza, R.E.</au><au>Mendes, P.B.</au><au>Monteiro, H.S.S.</au><au>Alves, H.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dialectical non-supervised image classification</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>2480</spage><epage>2487</epage><pages>2480-2487</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>The materialist dialectical method is a philosophical investigative method to analyze aspects of reality as complex processes composed by integrating units named poles. Dialectics has experienced considerable progress in the 19th century, with Hegel's dialectics and, in the 20th century, with the works of Marx, Engels, and Gramsci, in philosophy and economics. The movement of poles through their contradictions is viewed as a dynamic process with intertwined phases of evolution and revolutionary crisis. Santos et al. introduced the objective dialectical classifier (ODC), a non-supervised self-organized map for classification. As a case study, we used ODC to classify 181 magnetic resonance synthetic multispectral images composed by proton density, T 1 - and T 2 -weighted synthetic brain images. Comparing ODC to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning with image fidelity indexes as estimatives of quantization distortion, we proved that ODC can reach the same quantization performance as optimal non-supervised classifiers like Kohonen's self-organized maps.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983252</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2009 IEEE Congress on Evolutionary Computation, 2009, p.2480-2487 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_4983252 |
source | IEEE Xplore All Conference Series |
subjects | Biological neural networks Brain modeling Computational intelligence Computer networks Image classification Magnetic resonance Multispectral imaging Pattern recognition Protons Quantization |
title | Dialectical non-supervised image classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dialectical%20non-supervised%20image%20classification&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=dos%20Santos,%20W.P.&rft.date=2009-05&rft.spage=2480&rft.epage=2487&rft.pages=2480-2487&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983252&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&rft_dat=%3Cieee_CHZPO%3E4983252%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-32ce8f4f2fc51b107225b1d7671f2af90b218654b8da0c2b6ef2cd538bf901003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983252&rfr_iscdi=true |